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MORTENSEN OBSERVER FOR A CLASS OF VARIATIONAL INEQUALITIES –
LOST EQUIVALENCE WITH STOCHASTIC FILTERING APPROACHES
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Abstract. We address the problem of deterministic sequential estimation for a nonsmooth dynamics
governed by a variational inequality. An example of such dynamics is the Skorokhod problem with a
reflective boundary condition. For smooth dynamics, Mortensen introduced in 1968 a nonlinear esti-
mator based on likelihood maximisation. Then, starting with Hijab in 1980, several authors established
a connection between Mortensen’s approach and the vanishing noise limit of the robust form of the
so-called Zakai equation. In this paper, we investigate to what extent these methods can be developed
for dynamics governed by a variational inequality. On the one hand, we address this problem by relax-
ing the inequality constraint by penalization: this yields an approximate Mortensen estimator relying
on an approximating smooth dynamics. We verify that the equivalence between the deterministic and
stochastic approaches holds through a vanishing noise limit. On the other hand, inspired by the smooth
dynamics approach, we study the vanishing viscosity limit of the Hamilton-Jacobi equation satisfied by
the Hopf-Cole transform of the solution of the robust Zakai equation. In contrast to the case of smooth
dynamics, the zero-noise limit of the robust form of the Zakai equation cannot be understood in our
case from the Bellman equation on the value function arising in Mortensen’s procedure. This unveils
a violation of equivalence for dynamics governed by a variational inequality between the Mortensen
approach and the low noise stochastic approach for nonsmooth dynamics.
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Résumé. Nous abordons le problème de l’estimation séquentielle déterministe pour une dynamique
non lisse régie par une inégalité variationnelle. Un exemple d’une telle dynamique est le problème de
Skorokhod avec une condition aux limites réflexive. Pour les dynamiques lisses, Mortensen a introduit
en 1968 un estimateur non linéaire fondé sur un principe du maximum de vraisemblance. Puis, à
partir de Hijab en 1980, plusieurs auteurs ont établi un lien entre l’approche de Mortensen et la
limite de faible bruit de la forme robuste de l’équation dite de Zakai. Dans cet article, nous étudions
dans quelle mesure ces méthodes peuvent être développées pour des dynamiques gouvernées par une
inégalité variationnelle. D’une part, nous abordons ce problème en relâchant la contrainte d’inégalité
par pénalisation : cela donne un estimateur approché de Mortensen reposant sur une dynamique lisse
approchée. Nous vérifions que l’équivalence entre les approches déterministe et stochastique est vérifiée
quand le bruit tend vers 0. D’autre part, en s’inspirant de du cadre de la dynamique lisse, nous étudions
la limite de viscosité évanescente de l’équation de Hamilton-Jacobi satisfaite par la transformée de
Hopf-Cole de la solution de l’équation robuste de Zakai. Contrairement au cas de la dynamique lisse,
la limite de bruit nul de la forme robuste de l’équation de Zakai ne peut pas être comprise dans notre
cas à partir de l’équation de Bellman sur la fonction de valeur résultant de la procédure de Mortensen.
Ceci suggère une violation d’équivalence pour la dynamique régie par une inégalité variationnelle entre
l’approche de Mortensen et l’approche stochastique à faible bruit pour la dynamique non lisse.
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1. Problem setting

In this paper, we consider the problem of estimating the deterministic state resulting from a nonsmooth
dynamical system given an observation. The system state is the solution of a variational inequality, and both
the state dynamics and the observation are subjected to disturbances. We aim at finding the “best” deterministic
estimate of the state from the observation. The state estimation of various fundamental examples motivates
our problem. These include: a) elasto-plasticity (transition from elastic and plastic phases) [14], b) dry friction
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(transition from static and dynamic phases) [6] or c) impacts (switch of velocity at the instant of contact with
an obstacle) [5]. The state variable in these models is non-differentiable at the transition from one phase to
another, and variational inequalities are well-suited to describe such situations

As a an example of simple representative nonsmooth dynamics, we study the Skorokhod problem with a
reflective boundary condition at 0. We then consider the R+-valued state variable x = (x(t))t∈[0,T ] solution of
the variational inequality (VI)

for a.e. t ∈ [0, T ], ∀z ≥ 0, (f(x(t)) + ω(t)− ẋ(t))(z − x(t)) ≤ 0, (1)

where f : R → R is a Lipschitz function from R to R, and the state disturbance ω : [0, T ] → R is a square
integrable function. The map t 7→ x(t) is continuous and differentiable almost everywhere. Adequate conditions
of existence and uniqueness for this classical system are stated in [7]. When f ≡ 0, x is solution of the
deterministic Skorokhod problem [35, p.231]. Given ζ ∈ R+, the deterministic Skorokhod problem is to find a
pair (x, k) satisfying the following four conditions: 1) x is a non negative continuous function with given initial
value ζ at t = 0, 2) k is a continuous non increasing function vanishing at 0, 3) x(t) + k(t) = ζ +

∫ t

0
ω(s)ds and

4) k varies only when x = 0. For this simple constrained dynamics, the solution is explicit:

x(t) + k(t) = ζ +

∫ t

0

ω(s) ds where k(t) := min
0≤s≤t

min(0 ; ζ +

∫ s

0

ω(τ) dτ).

Figure 1 illustrates the above trajectory.
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Figure 1. Example of a trajectory with an oscillating
∫ t

0
ω(s)ds. ζ +

∫ t

0
ω(s)ds is represented

in black, k in gray and x in red. The “upward push" k ensures that the resulting state variable
x stays positive. Pushes occur only when x = 0.

To link the dynamics (1) to the available observation, we model the measurement procedure using an
observation map h ∈ C2(R+,R). The observation is related to dynamics (1) by

∀t ≥ 0, ẏ(t) = h(x(t)) + η(t), (2)

where η(t) ∈ R is the observation disturbance. We follow the usual convention in stochastic filtering, denoting
the left hand side (lhs) of (2) by ẏ. However, in most deterministic observation problems, the lhs of (2) is
denoted by y. The interest of the filtering convention will become clear when connecting deterministic and
stochastic settings. In the deterministic framework, we introduce the notation {x̌(t)}t≥0 to denote the state
trajectory (intended to correspond to the actual behavior of a real system). We refer to it as the (partially)
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observed trajectory, since from it, a measurement procedure produces the observation {ẏ(t)}t≥0. From now on
we consider that observations are fixed. In this setting, η : t 7→ ẏ(t)− h(x̌(t)) is a measurement error. Both the
state and observation disturbances are unknown but we will assume that they are small in L2 norm, as detailed
below.

Based on the available information {ẏ(t)}t≥0, we aim at designing a causal estimator – also called observer –
of the partially observed trajectory {x̌(t)}t≥0. The observer should be understood in the sense of [25]. This
observer is a causal estimator, in the sense that the estimation at time t ≥ 0 only depends on the measurements
{ẏ(s)}0≤s≤t. In other words, the observer is non-anticipative.

For smooth dynamical systems, an “optimal” deterministic approach to non-linear system filtering is proposed
by Mortensen [29]. This procedure relies on the minimisation of an energy functional. This energy quantifies
the likelihood that the state variable produces a given observation – up to disturbances – on a finite time
interval, the final time value of the state being imposed. The lower the energy of a state, the more likely the
state is. The Mortensen filter is the minimiser of this energy, also known, since then, as the minimum energy
estimator [18,24]. Moreover, for smooth dynamical systems, Mortensen also proposes a differential equation for
the dynamics of this estimator. This equation is based on the computation of the energy which is solution, in
the viscosity sense, of a Hamilton-Jacobi-Bellman(HJB) dynamics [16,20]. This provides an efficient sequential
strategy for estimating nonlinear dynamical systems.

We want to investigate to what extent the Mortensen formalism can be extended to the nonsmooth case of
the Skorokhod problem with a reflective boundary condition at 0. Given (ω, ζ) ∈ L2(0, t) × R+, there exists a
continuous function x|ω,ζ satisfying (1) with x(0) = ζ, x|ω,ζ being differentiable almost everywhere. We then
define the finite energy

J (ω, ζ, t) := ψ(ζ) +

∫ t

0

ℓ(ω(s), x|ω,ζ(s), s)ds,

where ψ : R+ → R+ is locally Lipschitz and

ℓ(ω, x, s) :=
1

2
|ω|2 + 1

2
|ẏ(s)− h(x)|2.

If (ω⋆, ζ⋆) ∈ L2(0, t)× R+ is the unique (respectively one of the) minimizer(s) of J , then the (respectively one
of the) most likely state(s) of x̌ is x|ω⋆,ζ⋆ . Let us fix the terminal state x at the terminal time t. Given the
observation {ẏ(s), 0 ≤ s ≤ t}, the cost-to-come to the point x at time t is defined by

V(x, t; ẏ(.)) := inf
(ω,ζ)∈Ax,t

J (ω, ζ, t), (3)

where the admissible set is defined as

Ax,t := {(ω, ζ) ∈ L2(0, t)× R+, x|ω,ζ(t) = x}.

The Mortensen estimator is then defined as

∀t ≥ 0, x̂(t) := argmin
x∈R

V(x, t; ẏ(.)), when the minimizer is unique. (4)

In the smooth setting, the cost-to-come is proven to be a viscosity solution of a HJB with initial condition ψ.
This enables the sequential computation of the cost-to-come, and then of the Mortensen estimator x̂(t) as a
minimizer of x 7→ V(x, t). From the nonsmooth dynamics given by the variational inequality (1), a Mortensen
estimator t 7→ x̂(t) could still be defined as a minimizer of x 7→ V(x, t). However, the HJB equation for the
corresponding cost-to-come V remains unclear.

In the smooth setting, several authors established a connection between the Mortensen approach and the
vanishing noise limit of stochastic filtering methods, see e.g. [16, 18, 20]. The central tool in stochastic filtering
is the Zakai equation, whose solution is an unnormalised version of the conditional density of the state given
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the observation [21,38,39]. The minimum energy approach is then recovered as the vanishing noise limit of the
robust form (path-wise form) of the Zakai equation. A proof of this fact can be found in [18], using probabilistic
tools from the large deviation theory. The stochastic filtering framework has been similarly applied to the
Skorokhod problem, see e.g. [33]. Therefore, it sounds plausible that the HJB equation on the cost-to-come
(3) can be obtained as a vanishing noise limit of the stochastic filtering procedure for the Skorokhod problem.
However, we will see that the picture is more subtle for this nonsmooth dynamics, because the zero-noise limit
of the stochastic approach does not provide the desired equation for the deterministic cost-to-come.

The paper is organized as follows. In Section 2, we propose an approximation of the Mortensen estimator
using a penalization approach where the dynamics is smooth. This penalization approach reviews in the same
time the general results related to the Mortensen estimator in the smooth case. In Section 3, we start from
the non-smooth stochastic filtering procedure and perform a vanishing noise limit similar to the smooth case.
This limit provides a candidate for the HJB equation that the cost-to-come (3) should solve. In Section 4, we
interpret the solution of this latter HJB equation as the value function of a control problem. We then show that
this value function cannot be identified to the cost-to-come (3) related to the nonsmooth dynamics (1). This
breaks the equivalence between small noise stochastic filtering and the Mortensen deterministic estimation.

2. The penalized case

We begin our study by considering a smooth dynamics version of the Skorokhod problem where the boundary
constraint is penalized. This allows us to review all the basic ingredients that lead to the Mortensen estimator,
paving the way for the nonsmooth problem. In addition, the penalized dynamics provides a way to define an
approximate Mortensen estimator from measurements associated with the nonsmooth problem, as an alternative
to obtain the Mortensen estimator directly from the nonsmooth problem.

2.1. An approximate Mortensen estimator from nonsmooth dynamics penalization

We relax the boundary constraint of the underlying dynamics (1) for the energy V(x, t; ẏ(.)). The inequality
is replaced by a nonlinear equation with a drift penalizing the solution whenever it takes negative values. We
then introduce a modified cost-to-come Vκ(x, t; ẏ(.)) whose definition is similar to V(x, t; ẏ(.)) in (3), except
that Ax,t is replaced by

Aκ
x,t :=

{
(ω, ζ) ∈ L2(0, t)× R+, ∃ xκ that satisfies ẋκ = fκ(xκ) + ω, a.e. with xκ(0) = ζ, xκ(t) = x

}
.

Here xκ is an approximate version in R of (1) where{
ẋκ(t) = fκ(xκ(t)) + ω(t), a.e. t > 0,

xκ(0) = ζ,
(5)

the penalty function fκ being a C1 approximation of the Moreau-Yosida regularisation of fκ0 : x 7→ κmax(−x, 0)+
f(x). For large enough κ > 0, we require that fκ agrees with the Moreau-Yosida regularisation over (−∞,−κ−1)∪
R+, and that the slope of fκ belongs to [−2κ, 0] for x ∈ (−κ−1, 0). This is possible because f is Lipschitz con-
tinuous. The additional term κmax(−x, 0) vanishes as soon as x ≥ 0, and introduces a drift of strength κ
towards the non-negative half-line as soon as x < −κ−1. This term is also responsible for a drift of strength
between 0 and 2κ towards the non-negative half-line when −κ−1 < x < 0. As κ→ +∞, the solution of (5) can
be shown to converge towards the solution x of (1) in the max norm on any finite time interval, using techniques
analogous to the Moreau-Yosida regularisation [7].
We then define a relaxed version of the Mortensen estimator as follows:

∀t ≥ 0, x̂κ(t) := argmin
x∈R

Vκ(x, t; ẏ(.)), (6)
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under the condition of existence and uniqueness of such a minimizer for the function x 7→ Vκ(x, t; ẏ(.)). In
Vκ(x, t; ẏ(.)), we point out that the the given observation ẏ(.) was produced – up to measurement errors – from
a target system x̌ governed by a variational inequality. In other words, the trajectory xκ, generated from ẏ(.) by
the penalized dynamics, adds a model error to the already present measurement error. For the ease of reading,
we will now write Vκ(x, t) = Vκ(x, t; ẏ(.)).

2.2. The HJB equation for the cost-to-come with penalized dynamics

If we consider an optimal control pair (ω|[0,t], ζ) for the “cost-to-come” problem with terminal state x at time
t then for any intermediate time t− τ between the times 0 and t, the part of this control enclosed by the times
0 and t − τ , namely ω|[0,t−τ ], remains optimal for the “cost-to-come” problem with terminal state xκ|ω,ζ(t − τ)

at time t− τ . This is summarized by the following theorem proved in [20].

Theorem 2.1 (Bellman’s principle). Let 0 ≤ t1 ≤ t2 ≤ t, and choose (ω, ζ) ∈ Aκ
x,t. Then, we have

Vκ
(
xκ|ω,ζ(t2), t2

)
≤ Vκ

(
xκ|ω,ζ(t1), t1

)
+

∫ t2

t1

ℓ
(
ω(s), xκ|ω,ζ(s), s

)
ds.

where ẋκ|ω,ζ = fκ(xκ|ω,ζ) + ω.

We here want to emphasize the importance of the reversibility in time of the penalized problem to properly
define the cost-to-come. Indeed, we can consider xκrev : τ 7→ xκ(t − τ) following the dynamics −ẋκrev(τ) =
fκ(xκrev(τ)) + ω(τ) with xrev(0) = x. In this way, we find that Aκ

x,t ̸= ∅ and Aκ
x,t =

⋃
ω∈L2(0,t)

{(ω, xκrev(t))}. The

infinitesimal version of Bellman’s principle above becomes (7).
Using the previous definition and Bellman’s principle, we obtain, as a direct adaptation of [20], that the

dynamics followed by the cost-to-come Vκ is given by the following HJB equation{
∂tVκ(x, t) +H(x, t, ∂xVκ(x, t)) = 0, (x, t) ∈ R× R+

Vκ(x, 0) = ψ(x), x ∈ R
(7)

where the Hamiltonian is given by

H(x, t, λ) := max
ω∈R

[λ(fκ(x) + ω)− ℓ(ω, x, t)] =
1

2
λ2 + λfκ(x)− 1

2
|ẏ(t)− h(x)|2 . (8)

Clearly, the notion of solution of (7) should be specified and, for the sake of completeness we recall the classical
definition of a viscosity solution in R.

Definition 2.2. Let U ∈ C0(Rn × (0, T );R). We say that U is a viscosity subsolution of (7) provided that for
all ϕ ∈ C1(Rn × (0, T );R), if U − ϕ attains a local maximum at (x, t) then

∂tϕ(x, t) +H(x, t, ∂xϕ(x, t)) ≤ 0. (9)

We say that U is a viscosity supersolution of (7) provided that for all ϕ ∈ C1(Rn × (0, T );R), if U − ϕ attains a
local minimum at (x, t), then

∂tϕ(x, t) +H(x, t, ∂xϕ(x, t)) ≥ 0. (10)
If U is both a viscosity subsolution and supersolution, we say that U is a viscosity solution of (7).

We then have the following theorem.

Theorem 2.3. The cost-to-come (x, t) 7→ Vκ(x, t) defined above is a viscosity solution of (7).

In the context of the initial nonsmooth dynamics, we would like to understand the initially defined cost-to-
come V as a solution in the viscosity sense of a HJB equation. However, we see that (7) gives little intuition of
the potential HJB solution candidate when κ→ ∞.
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2.3. The cost-to-come with penalized dynamics seen as the limit of a stochastic filtering
problem

In the context of smooth problems such as our penalized dynamics, bridges between the deterministic problem
introduced by Mortensen and the more general stochastic filtering framework, were introduced in [18, 19] and
further developed in [20]. In the context of small noise in the stochastic setting, this allows us to understand the
solution of the HJB equation (7) as a vanishing viscosity limit of a value function formed from the conditional
measure of the state knowing the observation up to the current time. We assume that we can exploit such
equivalence bridges to propose a candidate dynamics for our originally defined cost-to-come V in the case of
nonsmooth dynamics.

Let us then introduce a small noise amplitude ε > 0, together with the nonlinear filtering problem in R
dXκ,ε

t = fκ(Xκ,ε
t )dt+

√
εdB1

t ,

dY κ,ε
t = h(Xκ,ε

t )dt+
√
εdB2

t ,

with the initial condition (Xκ,ε
0 , Y κ,ε

0 ) = (ξ, 0).

(11)

for independent brownian motions (B1
t )t≥0 and (B2

t )t≥0. To give a rigorous meaning to this, consider Ω :=
C0

0(R+;R2) the set of continuous functions vanishing at 0, endowed with the topology of uniform convergence
on compact sets. Let F denote the Borel σ-field on Ω. For each t ≥ 0 and ω ∈ Ω, define Bt(ω) := ω(t) and set
Ft := σ{Bs, 0 ≤ s ≤ t} (the σ algebra generated by B up to time t). In this way, for all 0 ≤ s ≤ t, Fs ⊆ Ft and
F = σ (∪τ≥0Fτ ). We complete the triple (Ω,F , {Ft}) with the Wiener measure P. We recall that the Wiener
measure (see [23]) is the unique probability measure on (Ω,F) satisfying for all 0 ≤ s ≤ t and Γ ∈ B(R2),

P (Bt ∈ Γ|Fs) =
1

2π(s− t)

∫
Γ

exp

(
−∥y −Bs∥2

2(t− s)

)
dy.

Here ∀ζ = (ζ1, ζ2) ∈ R2, ∥ζ∥2 := ζ21 + ζ22 . Note that since {B0 = 0} = Ω, we have P(B0 = 0) = 1. Consider
now ε > 0, a state ξ ≥ 0 and a continuous bounded function h : R → R, which admits a continuous bounded
derivative. To assign a meaning to (11), consider the mapping ω(.) → (xκ(.), yκ(.)) from C0

0([0, T ];R2) to
C0([0, T ];R2) where for every t ≥ 0,

xκ,ε(t) = ξ +

∫ t

0

fκ(xκ,ε(s))ds+
√
εω1(t),

yκ,ε(t) =

∫ t

0

h(xκ,ε(s))ds+
√
εω2(t)

is well-defined and continuous. If we denote this continuous map by ϕκ,εξ then P
(
ϕκ,εξ

)−1

, the push forward
measure of P by ϕκ,εξ , is the pathwise law associated with (Xκ,ε, Y κ,ε) solving (11). The filtering problem now
aims to compute the measure-valued process (πκ,ε

t )t≥0 defined as∫
R
φdπκ,ε

t := E
[
φ(Xκ,ε

t )|σ (Y κ,ε
s )0≤s≤t

]
,

for any bounded continuous φ : R → R, σ (Y κ,ε
s )0≤s≤t being the σ-algebra generated by the observation Y κ,ε

s

up to time t. This estimate of φ(Xκ,ε
t ) is optimal in the least-square sense, given the knowledge of Y κ,ε

s up
to time t. An evolution non-linear equation called the Kushner-Stratonovich equation can be derived for πk,ε

t

using a sophisticated representation formula involving the innovation process, see for instance [1]. Let’s focus
on a rather simple approach which relies on the unnormalized conditional measure [1]∫

R
φdρκ,εt := E[ exp [

1√
ε

∫ t

0

h(Xκ,ε
s )dY κ,ε

s − 1

2ε

∫ t

0

h2(Xκ,ε
s )ds]φ(Xκ,ε

t )

∣∣∣∣σ (Y κ,ε
s )0≤s≤t ] ,
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which can be linked to πκ,ε
t by the Kallianpur-Striebel formula: for any continuous bounded function φ

∫
R
φdπκ,ε

t =

∫
R
φdρκ,εt∫
R
dρκ,εt

.

This formula in this case is an analogous of Bayes’ formula, see [1, 22, 34]. The density qκ,ε(x, t) of ρκ,εt with
respect to the Lebesgue measure solves the linear stochastic partial differential equation (SPDE){

dqκ,ε(x, t) = A∗
κ,εq

κ,ε(x, t) + 1
εh(x)q

κ,ε(x, t)dY κ,ε
t , (x, t) ∈ R× R+

qκ,ε(x, 0) = qκ,ε0 (x), x ∈ R.
(12)

This is the Zakai equation, to which a rigours meaning is given in [1, 31, 39]. The operator A∗
κ,ε is the formal

L2 adjoint of
Aκ,ε =

ε

2
∂2xx + fκ∂x.

The asymptotic behavior of qκ,ε(x, t) is studied in [20] as ε → 0. Instead of directly dealing with the Zakai
equation, they performed the transform [13,37]

pκ,ε(x, t) = exp(− 1

ε
y(t)h(x))qκ,ε(x, t), (13)

for a given realisation (y(t))0≤t≤T of (Y κ,ε
t )0≤t≤T , which leads to the robust form of Zakai equation [2, 9, 11]:∂tpκ,ε(x, t)−

ε

2
∂2xxp

κ,ε(x, t) + gκ(x, t)∂xp
κ,ε(x, t) +

1

ε
Pκ,ε(x, t)pκ,ε(x, t) = 0, (x, t) ∈ R× R+,

pκ,ε(x, 0) = qκ,ε0 (x), x ∈ R,
(14)

where gκ(x, t) = fκ(x)− y(t)h′(x) and

Pκ,ε(x, t) =
1

2
h2(x) + y(t)Aκ,εh(x)−

1

2
y2(t)|h′(x)|2 + ε∂x(f

κ(x)− y(t)h′(x)).

Detailed computations can be found in appendix 5.1. By the logarithmic transformation – also known as
Hopf-Cole transform –

Sκ,ε(x, t) = −ε log pκ,ε(x, t), (15)
the robust form of Zakai equation can be converted into a HJB equation on Sκ,ε(x, t){

∂tSκ,ε(x, t) +Hκ,ε(x, t, ∂xSκ,ε) =
ε

2
∂2xxSκ,ε, (x, t) ∈ R ∈ R+,

Sκ,ε(x, 0) = Sκ
0 (x), x ∈ R,

(16)

where
Hκ,ε(x, t, λ) = λgκ(x, t) +

1

2
λ2 − Pκ,ε(x, t).

The ε→ 0 limit of qκ,ε(x, t) is then obtained by studying that of Sκ,ε(x, t). The limit function Sκ(x, t) formally
satisfies the HJB equation {

∂tSκ(x, t) +Hκ(x, t, ∂xSκ) = 0, (x, t) ∈ R× R+,

Sκ(x, 0) = Sκ
0 (x), x ∈ R,

(17)
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where

Hκ(x, t, λ) = λgκ(x, t) +
1

2
λ2 − Pκ(x, t),

Pκ(x, t) =
1

2
h2(x) + y(t)h′(x)fκ(x)− 1

2
y2(t)|h′(x)|2.

In [20], the authors then establish a link between stochastic and deterministic estimation by proving that

Vκ(x, t) = Sκ(x, t)− y(t)h(x),

using a uniqueness result for the vanishing viscosity solutions of (17). As a by-product, they obtained the
following asymptotic approximation

qκ,ε(x, t) ≈ exp

[
−1

ε
Vκ(x, t)

]
, as ε ↓ 0, (18)

understood – after taking the logarithm and multiplying by ε – as pathwise uniform convergence over compact
sets.

At this point, we recall that the observation ẏ(.) was produced – up to measurement errors – from a target
system x̌ governed by a variational inequality. Consequently, the density qκ,ε(x, t) generated from ẏ(.) contains
a model error due to the finiteness of κ. It sounds reasonable to expect (18) to be true as κ → +∞, when
replacing qκ,ε by the density obtained in the nonsmooth setting, and Vκ by the cost-to-come V in (3). However,
the lost equivalence, shown in the next sections, suggests that (18) is no more true in the nonsmooth setting.

3. Vanishing viscosity limit of the stochastic filtering problem related to
the constrained dynamics

3.1. The stochastic filtering problem for the constrained dynamics

The stochastic filtering framework provides a way to extend the previous results to the limit case κ → ∞
where the dynamics is constrained. This provides a candidate HJB equation that can be explored to define a
Mortenten estimator for variational inequality dynamics. Since the full probabilistic framework is much more
complicated, we only outline the main ingredients presented in [35] and we set f = 0 for the sake of conciseness.
The resulting HJB is then rigorously analyzed as such in the next section.

Following [35], let us consider the stochastic variational inequality in R+
∀ progressively measurable process Z, ∀0 ≤ s ≤ t,∫ t

s
(Zr −Xε

r )
(√
εdB1

r − dXε
r

)
+
∫ t

s
IR+

(Xε
r )dr ≤

∫ t

s
IR+

(Zr)dr,

dY ε
t = h(Xε

t )dt+
√
εdB2

t ,

with the initial condition (X0, Y0) = (ζ, 0),

(19)

with IR+ denoting the convex characteristic function of R+ (equal to 0 within R+ and +∞ outside). Following
[35, page 239], we say that a triple (Xε, Y ε,Kε), an R3-valued stochastic process, is a solution of (19), if the
following conditions are satisfied P almost surely (a.s.)

(1) Xε, Y ε,Kε are progressively measurable with continuous path and K0 = 0,
(2) ∀t ≥ 0, Xε

t ≥ 0,
(3) ∀T ≥ 0, ∥Kε

T ∥ <∞,
(4) ∀t ≥ 0, Xε

t +Kε
t = ζ +

√
εB1

t , and Y ε
t =

∫ t

0
h(Xε

s )ds+
√
εB2

t ,

(5) ∀0 ≤ s ≤ t, ∀z ∈ R+,
∫ t

s
(z −Xε

r )dKε
r ≤ 0.
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Since the diffusion coefficients in front of B1 and B2 are constant, we may fix an arbitrary ω ∈ Ω and regard
(19) as a deterministic problem with forcing {(B1

t (ω), B
2
t (ω)), t ≥ 0}. Still following [35], we say that a triple

(xε, yε, kε) is a solution of the generalized Skorokhod problem GSε, if the following conditions hold:
(1) xε, yε, kε are continuous, xε(0) = ζ and kε(0) = 0,
(2) ∀t ≥ 0, xε(t) ≥ 0,
(3) kε ∈ BVloc(R+;R),
(4) ∀t ≥ 0, xε(t) + kε(t) = ζ +

√
εω1(t), and yε(t) =

∫ t

0
h(xε(s))ds+

√
εω2(t),

(5) ∀0 ≤ s ≤ t, ∀z ∈ R+,
∫ t

s
(z − xε(r))dkε(r) ≤ 0.

Theorem 3.1. [35, Theorem 4.17 page 252] Assume h to be sufficiently smooth, ζ ∈ R+ and ω(.) is a
continuous function with ω(0) = 0. Then the GSε(ζ, ω) has a unique solution.

Theorem 3.2. [35, Theorem 4.16 page 247] The mapping (ζ, ω) 7→ (xε, yε) = GSε(ζ, ω) is continuous from
R+ × C0([0, T ];Rd) → C0([0, T ];R2).

Theorem 3.3. [35, Theorem 4.18 page 257] The stochastic variational inequality (19) has a unique solution
(Xε, Y ε,Kε) progressively measurable with continuous path in the sense of the definition above.

Remark 3.4. When f ≡ 0, finding a solution to the VI (1) with the disturbance function ω(.) as an input
and ζ as initial condition at time 0 is equivalent to finding a solution to the deterministic Skorokhod problem
with ζ and the integral of ω as inputs. However, the stochastic Skorokhod problem in (19) is solved with ζ and
ω as inputs.This allows to define a continuous mapping as shown in [34, Theorem 4.16 page 247]. With this
mapping, a push forward of the Wiener measure is used to establish the solution to the stochastic Skorokhod
problem with ζ and two Wiener processes with variance ϵ as inputs.

The stochastic filtering problem of reflected diffusions has been tackled in [2, 27, 28, 30, 33]. As in section
2.3, the unnormalized conditional density qε(x, t) can be defined for the stochastic filtering problem of the
constrained dynamics, and it solves the Zakai equation with boundary condition

dqε(x, t) = ε
2∂

2
xxq

ε(x, t) +
qε(x, t)

ε
dY ε

t , (x, t) ∈ R+ × R+

qε(0, x) = qε0(x) x ∈ R+,

∂xq
ε(t, 0) = 0, t ∈ R+,

(20)

for which a rigorous meaning is given in [30–32]. Given a realisation (y(t))0≤t≤T of (Y ε
t )0≤t≤T , the change of

variable

pε(x, t) = exp(− 1

ε
y(t)h(x))qε(x, t), (21)

now leads to the robust Zakai equation with boundary condition
∂tp

ε(x, t)− y(t)h′(x)∂xp
ε(x, t) +

1

ε
Pε(x, t)pε(x, t) =

ε

2
∂2xxp

ε(x, t), (x, t) ∈ R+ × R+

ε
2∂xp

ε(t, 0) +
y(t)h′(x)

2
pε(0, t) = 0, t ∈ R+,

(22)

where

Pε(x, t) =
1

2
h2(x)− ε

2
y(t)h′′(x)− 1

2
y2(t)|h′(x)|2. (23)

Details on this derivation are given in appendix 5.1. By the Hopf-Cole transform

Sε(x, t) = −ε log pε(x, t), (24)
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the robust Zakai equation can be converted into the following HJB equation with boundary condition
∂tSε(x, t) +Hε

S (x, t, ∂xSε(x, t)) =
ε

2
∂2xxSε(x, t), (x, t) ∈ R+ × R+,

∂xSε(0, t)− y(t)h′(0) = 0, t ∈ R+,

Sε(x, 0) = −ε log pε(x, 0),
(25)

the Hamiltonian Hε
S being defined in (26) as

Hε
S :

{
R+ × R+ × R → R

(x, t, λ) 7→ λ2

2 − λy(t)h′(x)− Pε(x, t).
(26)

3.2. Viscous Hamilton-Jacobi equation on Sε

For the sake of generality, we assume in this section that f ̸= 0, with only f(0) = 0 to avoid additional
technical problems at the boundary – see Remark 3.5 for comments on the completely general case.We assume
that f and y are bounded C1 functions with bounded first derivatives, and h is a bounded xCtwo function with
bounded derivatives up to order 2 .

Starting from the stochastic filtering problem of the constrained dynamics and inspired by [20], we introduce
the Hamilton-Jacobi equation (27) formally satisfied by the Hopf-Cole transform of the solution of the robust
Zakai equation as done in the previous section, see (25). We prove a stability result that allows us to recover,
in the vanishing viscosity limit, what we will interpret in section 4.1 as a deterministic limit of the stochastic
filtering problem. Consider

∂tSε(x, t) +Hε
S(x, t, ∂xSε(x, t)) =

ε

2
∂2xxSε(x, t), x ∈ R∗

+, t > 0,

−∂xSε(0, t) = −y(t)h′(0), x = 0, t > 0,

Sε(x, 0) = S0(x), x ∈ R+, t = 0,

(27)

for some initial condition: S0 ∈ BUC(R+;R) (Bounded Uniformly Continuous), the Hamiltonian Hε
S being

defined for ε > 0 as

Hε
S :


R+ × R+ × R → R

(x, t, λ) 7→ λ2

2
+ λgS(x, t)−

[
h(x)2

2
+ y(t)Lεh(x)−

1

2
y(t)2|h′(x)|2 + ε∂xgS(x, t)

]
,

(28)

where by analogy with [20], we set ∣∣∣∣∣∣
gS(x, t) := f(x)− y(t)h′(x),

Lε :=
ε

2
∂2xx + f(x)∂x.

(29)

Contrary to [20] who started from the stochastic setting, this deterministic equation will be our starting
point, not requiring any previous result on the robust Zakai equation with boundary conditions, and defining
Sε as solution of (27) rather than as the value function resulting from a dynamic programming approach.

Remark 3.5. If f(0) ̸= 0, the second line of equation (27) reads instead

−∂xSε(0, t) = −y(t)h′(0)− 2f(0), x = 0, t > 0.

We may add an appropriate smooth, bounded perturbation of bounded derivatives to Sε, defining for instance:

S̄ε(x, t) := Sε(x, t)− 2xf(0)e−x2

,
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so that −∂xS̄ε(x, t) = −∂xSε(x, t) + 2f(0). We thus recover a function satisfying a closely related viscous
Hamilton-Jacobi equation whose Hamiltonian can be easily computed. That new Hamiltonian satisfies the
same sufficient properties for the rest of the section, and the boundary condition of the new equation does not
involve f . Hence, similar results will hold, so to avoid unnecessary technicalities, we choose to take f(0) = 0
hereafter.

3.3. The Vanishing Viscosity Limit Procedure

We denote the formal limit of Hε
S as ε→ 0 by

HS :

{
R+ × R+ × R → R
(x, t, λ) 7→ λ2

2 + λgS(x, t)− (h(x))2

2 − y(t)f(x)h′(x) + 1
2 (y(t))

2|h′(x)|2.
(30)

The main theorem of the section is the following stability result.

Theorem 3.6. Assume that f, y ∈ C1
b(R+;R) and h ∈ C2

b(R+;R) are bounded with first (and second for h)
bounded derivatives, and Sε ∈ BUC(R+;R). Then:

(i): for all ε > 0 the second order evolution Hamilton-Jacobi equation (27) admits a unique smooth solution
Sε.

(ii): The Hamiltonian Hε
S defined in (28) converges locally uniformly as ε→ 0 to the limiting Hamiltonian

HS of equation (30),
(iii): Sε converges locally uniformly as ε→ 0 to a continuous function we denote by S,
(iv): S is the unique viscosity solution of the limiting Hamilton-Jacobi equation below, in the sense of

Definition 3.7.
∂tS(x, t) +HS(x, t, ∂xS(x, t)) = 0, x ∈ R∗

+, t > 0,

−∂xS(0, t) = −y(t)h′(0), x = 0, t > 0,

S(x, 0) = S0(x), x ∈ R+, t = 0.

(31)

Let us recall from e.g. [3,26] an appropriate notion of solution for the above Hamilton-Jacobi equations with
Neumann boundary condition. Consider the first order Hamilton-Jacobi equation on R+

∂tu(x, t) +H(x, t, u(x, t), ∂xu(x, t)) = 0, x ∈ R∗
+, t > 0,

B(0, t, u(0, t), ∂xu(0, t)) = 0 x = 0, t > 0,

u(x, t) = u0(x), x ∈ R+, t = 0,

(32)

for locally Lipschitz H and B, the latter being strictly increasing with respect to its last variable in the outward
normal direction at x: for all R > 0, there exists νR > 0 such that for all (x, t, u, λ) ∈ {0} ×R+ × [−R,R]×R,

B(x, t, u, λ+ αn(x))− B(x, t, u, λ) ≥ νRα, (33)

where n(x) is the unit outward normal to ∂R+ at x – so, −1. Note that the satisfaction of this condition is the
reason for the − sign preceding ∂xS(0, t) in (31), in which:

B(x, t, u, λ) = −λ+ y(t)h′(0).
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Definition 3.7. A continuous function u is said to be a viscosity subsolution of equation (32) if it satisfies that
for all ϕ ∈ C1(R+ × R+;R), at each maximum point (x0, t0) ∈ R+ × R+ of u− ϕ, we have:

If (x0, t0) ∈ R∗
+ × R∗

+, (∂tϕ+H(·, u, ∂xϕ))(x0, t0) ≤ 0,

If (x0, t0) ∈ {0} × R∗
+, min {B(·, u, ∂xϕ)(0, t0) , (∂tϕ+H(·, u, ∂xϕ))(0, t0)} ≤ 0,

If (x0, t0) ∈ R∗
+ × {0}, min {u(x0, 0)− u0(x0) , (∂tϕ+H(·, u, ∂xϕ))(x0, 0)} ≤ 0,

If (x0, t0) = (0, 0), min {u(0, 0)− u0(0) , B(·, u, ∂xϕ)(0, t0) , (∂tϕ+H(·, u, ∂xϕ))(0, 0)} ≤ 0.

A continuous function u is said to be a viscosity supersolution of equation (32) if it satisfies that for all
ϕ ∈ C2(R̄+ × R+;R), at each minimum point (x0, t0) ∈ R+ × R+) of u− ϕ, we have:

If (x0, t0) ∈ R∗
+ × R∗

+, (∂tϕ+H(·, u, ∂xϕ))(x0, t0) ≥ 0,

If (x0, t0) ∈ {0} × R∗
+, max {B(·, u, ∂xϕ)(0, t0) , (∂tϕ+H(·, u, ∂xϕ))(0, t0)} ≥ 0,

If (x0, t0) ∈ R∗
+ × {0}, max {u(x0, 0)− u0(x0) , (∂tϕ+H(·, u, ∂xϕ))(x0, 0)} ≥ 0,

If (x0, t0) = (0, 0), max {u(0, 0)− u0(0) , B(·, u, ∂xϕ)(0, t0) , (∂tϕ+H(·, u, ∂xϕ))(0, 0)} ≥ 0.

A continuous function u is said to be a viscosity solution of equation (32) if it is both a viscosity subsolution
and supersolution.

Theorem 3.8 (Uniqueness and conditional existence of BUC solutions – Theorem 2.1 in [3]). Assume the initial
condition u0 to be bounded and uniformly continuous. Assume H and B to be locally Lipschitz continuous, and
that H is locally uniformly Lipschitz continuous, convex and coercive in its last variable. Then, if u and v are
respectively a bounded upper semi-continuous (u.s.c.) viscosity subsolution and a bounded lower semi-continuous
(l.s.c.) viscosity supersolution of (32), then

u ≤ v on Ω̄× [0, T ].

Moreover, if such u, v exist and u = v = u0 on Ω̄×{0}, then equation (32) admits a continuous unique viscosity
solution.

Remark 3.9. There are crucial hypotheses of Barles’ theorem above that become immediate in our one spatial
dimension, first order Hamiltonian setting. First, the open set R∗

+ trivially satisfies that ∂R∗
+ = {0} ∈ W3,∞.

Second, the structure hypotheses labeled (H1), (H2), and (H3) in [3] are clearly satisfied by a first order
Hamiltonian H and by our boudary condition, and boil down to classical Lipschitz continuity, convexity and
coercivity hypotheses.

To consider homogeneous Neumann conditions, let’s work on wε(x, t) := Sε(x, t)−y(t)h(x), instead of directly
Sε. wε is given as the solution of

∂tw
ε(x, t) +Hε(x, t, ∂xw

ε(x, t)) =
ε

2
∂2xxw

ε(x, t), x ∈ R∗
+, t > 0,

−∂xwε(0, t) = 0, x = 0, t > 0,

wε(x, 0) = w0(x), x ∈ R+, t = 0,

(34)

provided with some locally bounded, Lipschitz initial condition w0. Local existence and uniqueness is shown in
Section 3.4 and global existence and uniqueness in Section 3.5, Corollary 3.14. The Hamiltonian Hε is defined
over (x, t, λ) ∈ R+ × R+ × R as

Hε(x, t, λ) :=
1

2
λ2 + λf(x)− 1

2
(h(x))2 − εf ′(x) +

ε

2
y(t)h′′(x) + ẏ(t)h(x). (35)
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Note that this Hamiltonian, its ε → 0 limit and all the Hamiltonians considered in this paper satisfy the
hypotheses of Theorem 3.8.

Remark 3.10. With this point of view, it is possible to directly define wε as the solution of equation (34) after
proving that it is well-posed, and to introduce Sε as a modification of wε. This allows to consider Sε without
starting from the general Zakai equation.

Proposition 3.11 (Local uniform convergence of the viscous Hamiltonian). Hε converges uniformly to H in
C0(R+ × R+ × R,R), where:

H(x, t, λ) :=
1

2
λ2 + λf(x)− 1

2
(h(x))2 + ẏ(t)h(x).

In an analogous way, Hε
S defined in equation (28) converges locally uniformly to HS defined in equation (30).

Formally, equation (34) tends to the following:
∂tw(x, t) +H(x, t, ∂xw(x, t)) = 0, x ∈ R∗

+, t > 0,

−∂xw(0, t) = 0, x = 0, t > 0,

w(x, 0) = w0(x), x ∈ R+, t = 0,

(36)

where the boundary condition must be understood in the sense of viscosity solutions, as in Definition 3.7.

Remark 3.12. If w is a viscosity solution of (36), the remark in Section 2 of [3] still holds: using well-chosen test
functions, it is possible to prove that the initial condition is satisfied in the classical sense provided w0 is smooth,
as in the present case here. For an extension to nonsmooth initial conditions, we refer to the corresponding
chapter of [4].

3.4. Local existence and uniqueness for the solution of (34)

We wish to extend equation (34) to x ∈ R in a way that guarantees that the restriction to x ∈ R+ of
the solution of the extended equation w̃ satisfies the Neumann boundary condition. Hence, it is sufficient to
construct an extention w̃ that is even, so ∂xw̃ is odd. Let us proceed by analogy with a reflection method
presented in [36, Ch. 3] for the heat equation with Neumann boundary condition:

∂tu(x, t)− k∂2xxu(x, t) = F (x, t), x > 0, t > 0,

∂xu(0, t) = 0, x = 0, t > 0,

u(x, 0) = u0(x) x ≥ 0, t = 0.

Let G be the Green heat kernel, defined over (x, t) ∈ R× R+ as:

Gk(x, t) =
1√
4kπt

exp

(
− x2

4kt

)
.

The function

ũ(x, t) := [Gk(·, t) ∗ u0(| · |)](x) +
∫ t

0

[Gk(·, t− s) ∗ F (| · |, s)](x) ds

is the Duhamel formulation corresponding to the symmetrised equation{
∂tũ(x, t)− k∂2xxũ(x, t) = F (|x|, t), x ∈ R, t > 0,

ũ(x, 0) = u0(|x|), x ∈ R, t = 0,

and its restriction to x ∈ R+ satisfies the initial Heat equation with Neumann boundary condition.
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In an analogous way, we define the symmetrised Hamiltonian H̃, taking into account that the variable λ will
be expected to be an odd function of x:

H̃ε :

{
R× R+ × R → R

(x, t, λ) 7→ H(|x|, t, sgn(x)λ) = 1
2λ

2 + λg(x)− Ṽ ε
w(x, t),

(37)

with 
g(x) := sgn(x)f(|x|),

Ṽ ε
w(x, t) :=

1

2
(h(|x|))2 − ẏ(t)h(|x|) + εf ′(|x|)− ε

2
y(t)h′′(|x|).

(38)

Note that g for w̃ε corresponds to gS for S, defined in (29). The ‘symmetrised’ version of equation (34) reads∂tw̃
ε(x, t) + H̃ε(x, t, ∂xw̃

ε(x, t)) =
ε

2
∂2xxw̃

ε(x, t), x ∈ R, t > 0,

w̃ε(x, 0) = w̃0(x), x ∈ R, t = 0,
(39)

where we use w̃0 : x ∈ R 7→ w0(|x|). Note that there is no more Neumann boundary condition.
Let us establish the well-posedness of the equation above.

Theorem 3.13 (Local existence and uniqueness of a solution of (39)). Let ε > 0. Let w̃0 ∈ L∞ ∩ Lip, and
H̃ε ∈ Liplocw.r.t. λ. Then there exists T > 0 such that there exists a unique smooth solution w̃ε of equation (39)
defined on R× [0, T ].

The proof of Theorem 3.13 is a technical, but relatively standard fixed-point method, so for the sake of
conciseness, we will only sketch it.

Proof. We fix ε, and assume, in a first step, that H̃ε is globally Lipschitz in λ. We prove that for (x, t) ∈
R × [0, T ] with T small enough, the mapping of a Picard iterate to the next is a contraction in the norm
∥u∥ := ∥u∥L∞ + ∥∂xu∥L∞ . We then extend the result to H̃ε locally Lipschitz in λ by applying a security
cylinder method used in [12, Ch.V]. Smoothness follows from that of the Green kernel. □

3.5. Uniform in ε bounds on wε

The main result of this section is the global existence, uniqueness and uniform-in-ε boundedness of wε stated
in Corollary 3.14. For the sake of simplicity, we first prove Theorem 3.15: uniform in ε estimates on the even
extension w̃ε to R× R+ of wε defined in equation (39).

Our proof strategy in this section is that of [20], with the exceptions that we apply it to w̃ε rather than the
extension of Sε, that we only have local existence of the solution at fixed ε for now, and that we need to glean
a sharper L∞

loc estimate. The global existence of the solution for each ε is a consequence of the uniform bounds
(Corollary 3.16), and the exact same proof can then be applied over [0, T ].

Corollary 3.14. Equation (34) admits a unique solution wε defined globally in time, and wε is locally bounded
in W 1,∞

x (R+;C
1,1
t ) with analogous bounds to those from Theorem 3.15.

Theorem 3.15. Assume H̃ satisfies the assumptions of Theorem 3.8, and let T > 0 such that equation (39)
admits a unique smooth solution w̃ε over R× [0, T ]. Then for every compact subset Q ⊂ R× [0, T ] there exists
ε0 > 0 and K > 0 such that for all 0 < ε < min(ε0, 1), for all (x, t), (x, s) ∈ Q, w̃ε satisfies:

(i) |w̃ε(x, t)| ≤ K,

(ii) |∂xw̃ε(x, t)| ≤ K,

(iii) |w̃ε(x, t)− w̃ε(x, s)| ≤ K
(
|t− s|1/2 + |t− s|

)
.

(40)



ESAIM: PROCEEDINGS AND SURVEYS 145

Moreover, (i) can be refined into a sharper estimate (iv), where the bound itself does not depend on R. Namely,
for all R ≥ max(8, 16∥g∥L∞(R)) there exists εR := 1

32R4 such that for all 0 < ε < εR,

(iv) ∥w̃ε∥L∞(QR) ≤ ∥w̃0∥L∞(R) +
[
8(1 + ∥g∥L∞(R)) + ∥V ε∥L∞(R×[0,T ]) + 1

]
T + 1. (41)

Corollary 3.16. Equation (39) admits a unique solution w̃ε defined globally in time. Moreover, w̃ε is locally
bounded in the norm of Theorem 3.15.

Proof. Proof of Corollary 3.16 assuming Theorem 3.15
Consider the maximal interval of existence in time of the local solution w̃ε. The local uniform boundedness

of w̃ε allows to prove that interval is R+, which implies the existence of a unique solution w̃ε defined globally
in time. This in turn allows to apply Theorem 3.15 globally in time, recovering the same bounds over every
compact. Uniqueness follows from Theorem 3.13. □

Proof of Corollary 3.14.
Assume Theorem 3.15 and Corollary 3.16 hold. Then the restriction (x, t) ∈ R+×R+ 7→ w̃ε(x, t) is well defined

globally, bounded locally, and satisfies the equation (34). Here too, uniqueness follows from Theorem 3.13. □

To prove Theorem 3.15, we use the exact same comparison theorem as in [20], relying on the maximum
principle for linear parabolic PDE. We denote by B̄R ⊂ R the closed ball centred at 0 with radius R > 0, and
by ΓR := B̄R × {0} ∪ ∂B̄R × [0, T ] the parabolic boundary of QR := B̄R × [0, T ], whose interior we denote by
Q̊R.

Lemma 3.17 (Maximum Principle, [17]). Define

Lφ := ∂tφ− ε

2
∂2xxφ+ ∂xφb

ε,

where bε is smooth. If Lφ ≤ 0 (respectively, ≥ 0) in Q̊R, then for all (x, t) ∈ QR,

φ(x, t) ≤ sup
(z,s)∈ΓR

φ(z, s)(
respectively, inf

(z,s)∈ΓR

φ(z, s) ≤ φ(x, t)

)
.

Lemma 3.18 (Comparison theorem, [20] Lemma 4.2).
Let ε > 0. Let w̃ε be a solution of (34) over R× [0, T ] and define

L̃ : v ∈ C1(Q̊R;R) 7→ ∂tv −
ε

2
∂2xxv + g∂xv +

1

2
|∂xv|2 − Ṽ ε

w,

g(x) = sgn(x)f(|x|) and Ṽ ε
w being defined in (38). Let v ∈ C1(Q̊R;R). If L̃ v ≥ 0 (respectively, L̃ v ≤ 0) in Q̊R

and if w̃ε ≤ v (resp. v ≤ w̃ε) on ΓR, then w̃ε ≤ v (resp. v ≤ w̃ε) in Q̊R.

Same proof as in [20]: If L̃ v ≥ 0, then subtract L̃wε = 0 and let φ = v − w̃ε to get

∂tφ− ε

2
∂2xxφ+ g∂xφ+

1

2

(
|∂xv|2 − |∂xw̃ε|2

)
≥ 0

Now |∂xv|2 − |∂xw̃ε|2 = ∂xφ · (∂xv + ∂xw̃
ε) . Set

bε = g +
1

2
(∂xv + ∂xw̃

ε) .

Then Lφ ≥ 0 and on ΓR, φ(z, s) ≥ 0. Hence φ(x, t) ≥ 0 for all (x, t) ∈ QR by Lemma 3.17. □
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Proof of Theorem 3.15. The proof is very close to that given in [20], inspired by [15]. It relies on the construction
of a function v independent of ε such that L̃ v ≥ 0 in Q̊R and w̃ε ≤ v on ΓR, independent of (sufficiently small)
ε > 0, which is achieved by making v tend to ∞ close to the boundary.
Proof of (iv). Let R ≥ 4max(1, 2∥g∥) and ε ≤ εR := 1

2R4 . Define

v(x, t) =
1

R2 − |x|2
+ µt+M

where the constants µ > 0,M > 0 will be adequately chosen later. Then

L̃ v =µ− ε

2

(
2

(R2 − |x|2)2
+

8|x|2

(R2 − |x|2)3

)
+

2x

(R2 − |x|2)2
· g + 2|x|2

(R2 − |x|2)4
− Ṽ ε

w

=µ+
1

(R2 − x2)
4

[
x2 − ε

(
R2 − x2

) (
4x2 + (R2 − x2)

)]
+ ẼR(x) + GR(x)− Ṽ ε

w(x, t),

where we define: 
ẼR(x) :=

2xg(x)

(R2 − x2)
2 ≥ −ER(x) := −

2|x|∥g∥L∞(R)

(R2 − x2)
2 ,

GR(x) :=
x2

(R2 − x2)
4 ≥ 0.

Hence,

L̃ v ≥µ+
1

(R2 − x2)
4

[
x2 − ε

(
R4 + 2R2x2 − 3x4

)]
− ER(x) + GR(x)− Ṽ ε

w(x, t)

≥µ+
1

(R2 − x2)
4

[
x2 − ε

4R4

3

]
− ER(x) + GR(x)− Ṽ ε

w(x, t),

the term 4R4

3 being the maximum over X := x2 ∈ R of the second order polynomial in X right above it. For
ε < εR: either |x| ≥ 1 and it follows that x2 − ε 4R

4

3 ≥ 0; or |x| < 1 and

1

(R2 − x2)
4

[
x2 − ε

4R4

3

]
≥ −1

(R2 − 1)
4 .

Hence,

L̃ v ≥ µ− 1

(R2 − 1)
4 − ER(x) + GR(x)− ∥Ṽ ε

w∥L∞(R×[0,T ]). (42)

Claim: For all (x, t) ∈ QR,
−ER(x) + GR(x) ≥ −8max(1, ∥g∥2L∞(R)).

Proof of the Claim. We will prove the Claim for x ∈ [0, R) now. Mutatis mutandis, the proof for x ≤ 0 follows
with no notable difference. Let C = 4max

(
1,
√
∥g∥
)
, and η = 1

C
√
R

.

• If x ≤ R− η:

ER(x) ≤ ER(R− η) = 2∥g∥ R− η(
R2 − (R− η)

2
)2 =

C2∥g∥
2

R− 1
C
√
R

R− 1
C
√
R
+ 1

4C2R2

≤ C2∥g∥
2

≤ 8max(1, ∥g∥2).

And since GR(x) ≥ 0, the claimed inequality is satisfied.
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• Otherwise, R− η < x < R:

(R2 − x2)2GR(x) ≥ (R2 − (R− η)2)2GR(R− η) =
(R− η)

2

(2ηR− η2)
2 =

C2

4

R2 − 2
√
R

C + 1
C2R

R− C√
R
+ C2

4R2

.

To bound below the last fraction on the right-hand side, observe that since C > 1 and R ≥ 4, we have
2R
C < R2

2 ; and since

R
√
R ≥ 8R ≥ 8max(4, 8∥g∥) > C = 4max(1,

√
∥g∥),

we have:
C√
R

− C2

4R2
=

C√
R

[
1− C

4R
√
R

]
≥ 0.

We obtain:

(R2 − x2)2GR(x) ≥
C2R

8
.

Therefore,

GR(x)− ER(x) = (R2 − x2)2 [GR(x)− 2x∥g∥] ≥ (R2 − x2)2
[
C2R

8
− 2R∥g∥

]
≥ 0,

because C2 ≥ 16∥g∥.
This concludes the proof of the Claim. □

From the Claim and equation (42), it is clear that Lv ≥ 0 over QR, provided µ is chosen sufficiently large.
Specifically,

µ =
1

(R2 − 1)
4 + 8(1 + ∥g∥∥L∞(R)) + ∥Ṽ ε

w∥L∞(R×[0,T ]) (43)

suffices. Choose now M = ∥w0∥L∞(R): large enough that

w0(x) ≤M for all x ∈ BR.

Since v(x, t) → ∞ as |x| → R uniformly in t ∈ [0, T ], it follows from the maximum principle that

w̃ε ≤ v in Q̊R.

Similarly, by considering −v instead of v, we can find a similar upper bound for w̃ε.

Since v is continuous in Q̊R and max
|x|≤R/2

1

(R2 − x2)
2 =

4

3R2
, the following bound over QR/2 follows.

∥w̃ε∥L∞(QR/2) ≤
4

3R2
+ ∥w0∥L∞ + µT, (44)

with µ defined in (43). Hence,

∥w̃ε∥L∞(QR/2) ≤ ∥w̃0∥L∞(R) +

[
8(1 + ∥g∥L∞(R)) + ∥V ε∥L∞(R×[0,T ]) +

1

(R2 − 1)4

]
T +

4

3R2
. (45)

The desired estimate follows, concluding the proof of (iv).
Proof of (i). (iv) ⇒ (i).
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Proof of (ii). The estimate of the partial derivative in x closely follows [20], using a variant of the techniques
in [15]. It consists of the following steps.

• Define Q ⊂⊂ Q′ ⊂⊂ R× (0, T ), where Q,Q′ are open and “⊂⊂" means “compactly contained in".
• Choose a smooth function ζ such that ζ ≡ 1 on Q and ζ ≡ 0 near ∂Q′, and define

z := ζ2|w̃ε|2 − λw̃ε,

where λ > 0 will be chosen later.
• Apply the maximum principle to z: z reaches its maximum in Q̄′. Assume it’s reached at (x0, t0) ∈ Q′.

Then, since z is smooth, {
∂xz = 0,

0 ≤ ∂tz −
ε

2
∂2xz.

• Writing the previous inequality explicitly in terms of ζ and w̃ε and using the Hamilton-Jacobi equation
satisfied by w̃ε yields, for ε sufficiently small, at (x0, t0):

0 ≤ −∂xw̃ε · ∂x
(
ζ2|∂xw̃ε|2

)
− g · ∂x

(
ζ2|∂xw̃ε|2

)
+
λ

2
|∂xw̃ε|2 + Cζ|∂xw̃ε|3 + C|∂xw̃ε|2 + λC|∂xw̃ε|+ λC,

where we recall that C is a generic constant name. Using now ∂xz = 0 at (x0, t0), we have

λ

2
|∂xw̃ε|2 ≤ Cζ|∂xw̃ε|3 + C|∂xw̃ε|2 + λC|∂xw̃ε|+ λC.

• Choosing λ = µ[(max ζ)|∂xwε|+ 1], with µ > 1 to be chosen yields:

µ

2
|∂xw̃ε|2 ≤ C|∂xw̃ε|2 + Cλµ.

Hence for µ large enough, at (x0, t0),

|∂xw̃ε|2 ≤ Cλ.

Hence:
z ≤ Cλ in Q′ .

• If the max is reached at the boundary, the equation above holds since w̃ε is bounded. From it, [20]
recover:

max ζ2|∂xw̃ε|2 ≤ max z + Cλ ≤ Cλ

and by definition of λ,
max ζ2|∂xw̃ε|2 ≤ Cµ[max ζ|∂xw̃ε|+ 1],

which implies
ζ|∂xw̃ε| ≤ C in Q′ ,

so
|∂xw̃ε| ≤ C in Q̄,

concluding the proof.
Proof of (iii). Since H is locally bounded, the conditions of [10, Lemma 5.2] are met (with ε

2 here,
instead of ε), which allows to conclude to the ε-dependent Hölder estimate:

∀(x, t), (x, s) ∈ Q, |w̃ε(x, t)− w̃ε(x, s)| ≤ K
(√

ε |t− s|1/2 + |t− s|
)
.

Since ε ∈ (0, 1), taking ε = 1 in the right-hand side concludes the proof.
□
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3.6. Viscosity solution limit – Proof of Theorem 3.6.

Theorem 3.19. Assume w0 is bounded and Lipschitz continuous, and H satisfies the assumptions of Theorem
3.8. Then there exists a unique viscosity solution of the limiting equation (36), defined over (x, t) ∈ R+ × R+,
and that solution can be obtained by the vanishing viscosity method.

Proof. The bounds (i), (ii), and (iii) of Corollary 3.14 and the Arzela-Ascoli theorem (see e.g. [26, Theorem
1]) imply that there exists a decreasing subsequence (εk)k∈N that tends to 0 such that wεk converges uniformly
over compact sets to a continuous function w. From bound (iv), it follows that w is bounded over R+ × [0, T ].
Since Hε also converges uniformly over compact sets to H, Proposition 3.11, we may apply the stability result
in [3]. Uniqueness results from Theorem 3.8. □

We may now consider, for 0 < ε < 1 and for all (x, t) ∈ R+ × [0, T ]:

Sε(x, t) = wε(x, t) + y(t)h(x).

By construction, Sε is smooth and satisfies the second order evolution Hamilton-Jacobi equation (27). The
uniqueness of the solution to that equation – point (i) of Theorem 3.6 – is a direct consequence of Corollary 3.14.
The local uniform convergence of the Hamiltonian Hε

S to HS , point (ii), results from Proposition 3.11. Since
y and h are bounded and have bounded derivatives, appropriate bounds can be obtained on Sε of the type
of those in Corollary 3.14. So (iii), the convergence of Sε to S, follows from that of wε to w in the proof of
Theorem 3.19.

As for point (iv), the well-posedness of the limit equation follows from that of equation (36): Theorem 3.19.
Since y and h are smooth enough, yh may be added or subtracted to any test function, guaranteeing that
definition 3.7 applies for w in equation (36) if and only if it applies for S in equation (31). The vanishing
viscosity limit procedure also works in a similar way, concluding the proof of Theorem 3.6.

4. Dynamic programming principle for the HJB limit

At this point, the vanishing viscosity procedure has provided a functional that one could expect to be the cost-
to-come associated to the Mortensen estimation of the Skorohod problem. Unfortunately, despite its stochastic
interpretation, this function cannot be linked as in [20] to the cost-to-come of the deterministic problem.

4.1. A control problem interpretation of the limit solution

The limit w(x, t) = S(x, t) − y(t)h(x) can be characterised as the unique viscosity solution of the HJB
equation (36). Following the method of [20], a backward control process is now built whose cost function W will
be identified to w. Consider the control process associated to the R+-valued backward trajectories (zx,tω (s))0≤s≤t

defined by {
∀ a.e. s ∈ [0, t], ∀q ≥ 0, (żx,tω (s)− ω(s))(q − zx,tω (s)) ≤ 0

zx,tω (t) = x,
(46)

Assume this system is partially known through the perturbed observation function y(t) given by

ẏ(s) = h(zx,tω (s)) + η(s),

the control parameters η and ω being square-integrable R-valued functions of time. To each such ω can be
associated a backward trajectory zx,tω . The control problem then consists in minimizing a functional ψ(zx,tω (0))
of the arrival point at time 0, together with the L2 weights of control functions ω and η. The cost rate is thus

ℓ̃(ω, z, s) :=
1

2
ω2 +

1

2
|ẏ(s)− h(z)|2,
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so that the cost to go (backward in time) from x at time t to time 0 reads

inf
ω∈L2(0,t)

ψ(zx,tω (0)) +

∫ t

0

ℓ̃
(
ω(s), zx,tω (s), s

)
ds,

developing the square |ẏ(s)− h(z(s))|2, the term |ẏ(s)|2 doesn’t affect the minimization problem, and the cost
rate can be chosen to be

ℓ(ω(s), z(s), s) :=
1

2
ω2(s) +

1

2
h2(z(s))− ẏ(s)h(z(s)),

as required to take the limit in the probabilistic setting. This leads to the functional

J (ω, x, t) := ψ(zx,tω (0)) +

∫ t

0

ℓ
(
ω(s), zx,tω (s), s

)
ds,

and the cost function W(x, t) := infω J (ω, x, t) will appear to be the desired target function. Note the initial
value condition W(x, 0) = ψ(x).

Lemma 4.1 (Principle of Optimality). Consider a terminal point (x, t). Then for every 0 < τ < t

W(x, t) = inf
ω∈L2(t−τ,t)

[
W
(
zx,tω (t− τ), t− τ

)
+

∫ t

t−τ

ℓ
(
ω(s), zx,tω (s), s

)
ds
]
.

Proof. Given another control (ω′(s))0≤s≤t−τ , define the square-integrable control

ω̃(s) =

{
ω′(s) if 0 ≤ s < t− τ,

ω(s) if t− τ ≤ s ≤ t.

For s < t− τ note that zx,tω̃ (s) = z
zx,t
ω (t−τ),t−τ

ω′ (s), so that by definition of W

W(x, t) ≤ ψ
(
z
zx,t
ω (t−τ),t−τ

ω′ (0)
)
+

∫ t−τ

0

ℓ
(
ω′(s), z

zx,t
ω (t−τ),t−τ

ω′ (s), s
)

ds+
∫ t

t−τ

ℓ
(
ω(s), zx,tω (s), s

)
ds,

and taking the infimum over ω′ and ω concludes. Equality is achieved by considering a sequence of controls
whose costs converge towards the infimum. □

Lemma 4.2 (Uniform terminal continuity). Consider a terminal point (x, t) and M > 0; then s 7→ zx,tω (s) is
continuous at the terminal point s = t uniformly in ω such that J (x, ω, t) ≤M .

Proof. Consider ε > 0 and a control ω. If x > 0, the continuity of zx,tω at t guarantees that

τω := sup
{
τ > 0 , zx,tω (t− τ) > 0 and |zx,tω (t− τ)− x| ≤ ε

}
> 0.

Considering 0 < τ < min(τω, 1) to make sure that zx,tω (s) > 0, one has żx,tω (s) = ω(s) for t − τ ≤ s ≤ t thanks
to 46. Thus

x− zx,tω (t− τ) =

∫ t

t−τ

żx,tω (s)ds =
∫ t

t−τ

ω(s)ds.

Using Cauchy-Schwarz inequality

|x− zx,tω (t− τ)| ≤
√
2τJ (ω, x, t) ≤

√
2τM,
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and this proves the bound τω ≥
(

min(ε,|x|)√
2M

)2
, the right-hand side being independent of ω.

In the case x = 0, consider
τ0ω := sup

{
τ > 0 , ∀t− τ ≤ s ≤ t, zx,tω (s) = 0

}
,

τ1ω := sup
{
τ > τ0ω , z

x,t
ω (t− τ) > 0 and zx,tω (t− τ) ≤ ε

}
.

The continuity of zx,tω indeed guarantees τ0ω < τ1ω; since for τ0ω < τ < τ ′ < τ1ω

zx,tω (t− τ)− zx,tω (t− τ ′) =

∫ t−τ

t−τ ′
żx,tω (s)ds =

∫ t−τ

t−τ ′
ω(s)ds,

the same reasoning as above gives a positive lower bound for τ1ω − τ0ω which is independent of ω, completing the
proof. □

The function W can now be identified to the previous limit using the HJB equation (36). Note that the
Hamiltonian H can equivalently be defined as

H(x, t, λ) = max
ω′∈R

λω′ − ℓ (x, ω′, t) . (47)

Proposition 4.3 (Sub-solution). The function W is a viscosity sub-solution of (36).

Proof. For x ≥ 0 and t > 0, consider a C1 test function ϕ such that W−ϕ has a local maximum at point (x, t).
For any control ω and every τ > 0 small enough, this leads to

W
(
zx,tω (t− τ), t− τ

)
− ϕ

(
zx,tω (t− τ), t− τ

)
≤ W(x, t)− ϕ(x, t),

because of zx,tω (t) = x and the continuity of zx,tω at (x, t). Therefore, we have

ϕ(x, t)− ϕ
(
zx,tω (t− τ), t− τ

)
≤ W(x, t)−W

(
zx,tω (t− τ), t− τ

)
≤
∫ t

t−τ

ℓ
(
ω(s), zx,tω (s), s

)
ds,

using the principle of optimality of Lemma 4.1. Dividing by τ and taking the τ → 0+ limit gives

d
ds

∣∣∣∣
s=t

ϕ
(
zx,tω (s), s

)
≤ ℓ

(
ω(t), zx,tω (t), t

)
,

so that
∂tϕ(x, t) + żx,tω (t)∂xϕ(x, t)− ℓ (ω(t), x, t) ≤ 0.

Then, we have
∂tϕ(x, t) + ω(t)∂xϕ(x, t)− ℓ (ω(t), x, t) ≤ ∂xϕ(x, t)

[
ω(t)− żx,tω (t)

]
.

If x > 0 then żx,tω (t) = ω(t) according to (46); else x = 0 so that ω(t) − żx,tω (t) ≥ 0, and one can assume
∂xϕ(0, t) ≤ 0 following the definition (3.7). In every case

∂xϕ(x, t)
[
ω(t)− żx,tω (t)

]
≤ 0.

Since this is true for every ω, taking the maximum over ω(t) allows to recover (47) and

∂tϕ(x, t) +H (x, t, ∂xϕ(x, t)) ≤ 0,

as desired. □

Proposition 4.4 (Super-solution). The function W is a viscosity super-solution of (36).
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Proof. For x ≥ 0 and t > 0, consider a C1 test function ϕ such that W − ϕ has a local minimum at point (x, t).
Positive numbers δ, δ′ > 0 exist such that

|t− t′| ≤ δ and |x− x′| ≤ h⇒ W(x′, t′)− ϕ(t′, x′) ≥ W (x, t)− ϕ (x, t) . (48)

Fix now ε > 0 and M >W(x, t). By lemma 4.2 δ′ > 0 exists such that for every ω with J (x, ω, t) ≤M

0 ≤ τ ≤ δ′ ⇒ |zx,tω (t− τ)− x| ≤ h.

Consider a sequence (τn)n≥0 which converges to 0 with 0 < τn ≤ min(δ, δ′). In the principle of optimality 4.1
which characterises W(x, t), it is sufficient to minimize over ω with J (ω, x, t) ≤M , because M >W(x, t). Then
by definition of the infimum, ωn with J (x, ωn, t) ≤M exists for every n, satisfying

W(x, t) + ετn ≥ W
(
zx,tωn

(t− τn), t− τn
)
+

∫ t

t−τn

ℓ
(
ωn(s), z

x,t
ωn

(s), s
)
ds.

Using 48, it follows

ϕ (x, t)− ϕ
(
zx,tωn

(t− τn), t− τn
)
≥ W (x, t)−W

(
zx,tωn

(t− τn), t− τn
)

≥ −ετn +

∫ t

t−τn

ℓ
(
ωn(s), z

x,t
ωn

(s), s
)
ds.

The functions ϕ and zx,tωn
being differentiable, taking the s-derivative in ϕ (zx,tω (s), s) leads

ϕ (x, t)− ϕ
(
zx,tωn

(t− τn), t− τn
)
=

∫ t

t−τn

∂tϕ
(
zx,tωn

(s), s
)
+ żx,tωn

(s)∂xϕ
(
zx,tωn

(s), s
)
ds.

Therefore, we have∫ t

t−τn

∂tϕ
(
zx,tωn

(s), s
)
+ żx,tωn

(s)∂xϕ
(
zx,tωn

(s), s
)
− ℓ

(
ωn(s), z

x,t
ωn

(s), s
)
ds ≥ −ετn.

Adding
∫ t

t−τn
∂xϕ

(
zx,tωn

(s), s
)
ωn(s)ds to each side,∫ t

t−τn

∂tϕ
(
zx,tωn

(s), s
)
+ ∂xϕ

(
zx,tωn

(s), s
)
ωn(s)− ℓ

(
ωn(s), z

x,t
ωn

(s), s
)
ds

≥ −ετn +

∫ t

t−τn

∂xϕ
(
zx,tωn

(s), s
) [
ωn(s)− żx,tωn

(s)
]
ds.

Note now that

H
(
zx,tωn

(s), s, ∂xϕ
(
zx,tωn

(s), s
))

= max
ω′∈R

∂xϕ
(
zx,tωn

(s), s
)
ω′ − ℓ

(
ω′, zx,tωn

(s), s
)

≥ ∂xϕ
(
zx,tωn

(s), s
)
ωn(s)− ℓ

(
ωn(s), z

x,t
ωn

(s), s
)
.

Moreover if x > 0, the uniform convergence of lemma 4.2 allows to take n large enough so that zx,tωn
(s) > 0

for t − τn ≤ s ≤ t and thus żx,tωn
(s) = ωn(s). If x = 0 one can assume ∂xϕ (0, t) ≥ 0, and use the fact that

ωn(s)− żx,tωn
(s) ≥ 0 by 46, with equality when zx,tωn

(s) > 0. In every case∫ t

t−τn

∂xϕ
(
zx,tωn

(s), s
) [
ωn(s)− żx,tωn

(s)
]
ds ≥ 0,
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for n large enough. Thus∫ t

t−τn

∂tϕ
(
zx,tωn

(s), s
)
+H

(
zx,tωn

(s), s, ∂xϕ
(
zx,tωn

(s), s
))

ds ≥ −ετn.

Lemma 4.2 guarantees the continuity of s 7→ zx,tωn
(s) at s = t uniformly in ωn such that Wωn(t, s) ≤M , so that

dividing by τn and taking the n→ +∞ limit gives

∂tϕ (t, x) +H (x, s, ∂xϕ (x, t))) ≥ −ε.

Since this hold for every ε > 0, this concludes the proof. □

Theorem 4.5 (Identification). Using the uniqueness result from Theorem 3.13, it is now possible to identify
the solution w of (36) to W, provided that the initial condition is ψ(x) = w0(x).

This establishes the desired link between the stochastic filtering problem (19) and the control problem (46). In
particular, the limit doesn’t allow to compute a recursive estimator, because it stems from a control problem
and not a filtering one. The estimation has thus to be done by keeping some approximating noise with (small)
amplitude ε > 0, or using the penalized dynamics.

4.2. Lost equivalence with Mortensen’s approach

Let’s go back to the estimation problem of the constrained dynamics (1) with f = 0, namely the Skorokhod
problem: {

∀ a.e. t ∈ [0, T ], ∀z ≥ 0, (ω(t)− ẋ(t))(z − x(t)) ≤ 0

x(0) = ζ.
(49)

As in Section 2.2, it could be tempting to use a direct deterministic filtering approach base on the cost to
come

V(x, t) := inf
(ω,ζ)∈Ax,t

[
ψ(ζ) +

∫ t

0

ℓ(ω(s), x|ω,ζ(s), s) ds

]
,

where we omit ẏ to simplify the notation and the pre-image set can be also defined by

Ax,t :=
{
(ω, ζ) ∈ L2(0, t)× R+ : x|ω,ζ follows (49) with x|ω,ζ(0) = ζ, x|ω,ζ(t) = x

}
.

This admissible set is never empty, because it is always possible to reach every x ≥ 0 at time t starting from any
positive ζ ≥ 0 by considering a (slow enough) straight line without reflection. However, the dynamics (1) is now
well-posed in forward time only: given a value x at time t > 0 and a control ω, there’s no more well-posedness for
the backward in time problem starting from x at time t. This feature is due to the non-reversibility introduced
by the reflection and complicates the situation a lot. Furthermore V(x, t) can no more be easily characterized
as the solution of the expected HJB equation (36). Indeed, let’s try to show – as done for W in Proposition
4.3 – that V is a viscosity sub-solution of equation (36). First of all, one could prove the analogous of Theorem
2.1, which would read here:

V(x, t) = inf
(ω,ζ)∈Ax,t

[
V
(
x|ω,ζ(t− τ), t− τ

)
+

∫ t

t−τ

ℓ
(
ω(s), x|ω,ζ(s), s

)
ds
]
, (50)

Let’s now mimic the proof of Proposition 4.3: for x ≥ 0 and t > 0, consider a C1 test function ϕ such that V −ϕ
has a local maximum at point (x, t). For any control ω, any initial condition ζ and every τ > 0 small enough,
this leads to

V
(
x|ω,ζ(t− τ), t− τ

)
− ϕ

(
x|ω,ζ(t− τ), t− τ

)
≤ V(x, t)− ϕ(x, t),
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because of x|ω,ζ(t) = x and the continuity of x|ω,ζ at (x, t). We have

ϕ(x, t)− ϕ
(
x|ω,ζ(t− τ), t− τ

)
≤ V(x, t)− V

(
x|ω,ζ(t− τ), t− τ

)
≤
∫ t

t−τ

ℓ
(
ω(s), x|ω,ζ(s), s

)
ds,

using the principle of optimality given by (50). Dividing by τ and taking the τ → 0+ limit gives

d
ds

∣∣∣∣
s=t

ϕ
(
x|ω,ζ(s), s

)
≤ ℓ

(
ω(t), x|ω,ζ(t), t

)
,

so that
∂tϕ(x, t) + ẋ|ω,ζ(t)∂xϕ(x, t)− ℓ (ω(t), x, t) ≤ 0.

Then
∂tϕ(x, t) + ω(t)∂xϕ(x, t)− ℓ (ω(t), x, t) ≤ ∂xϕ(x, t)

[
ω(t)− ẋ|ω,ζ(t)

]
. (51)

If x > 0, then ẋ|ω,ζ(t) = ω(t) according to (49). Hence

∂tϕ(x, t) +H (x, t, ∂xϕ(x, t)) = 0 ≤ 0,

as desired. However if x = 0 then ω(t) − ẋκ|ω,ζ(t) ≤ 0 by definition of the sub-differential dynamics (49).
Considering ϕ such that ∂xϕ(0, t) ≤ 0, we get

∂xϕ(x, t)
[
ω(t)− ẋ|ω,ζ(t)

]
≥ 0,

which, when combined to (51) does not allow to constrain ∂tϕ(x, t) + ω(t)∂xϕ(x, t) − ℓ (ω(t), x, t) to be non-
positive. The boundary condition appears to be

min {+∂xϕ(0, t0) , (∂tϕ+H(·, u, ∂xϕ))(0, t0)} ≤ 0. (52)

A similar situation would arise if one tried to prove the super-solution property for V (the analog of Proposition
4.4). We therefore believe that the connection between the viscosity limit of stochastic filtering and deterministic
filtering for dynamics nonreversible in time is broken, and V cannot be computed from a forward dynamics that
appears – from (52) – to be an ill-posed HJB dynamics.

As a result, a recursive estimator of (49) – and similarly for (1) – cannot be the Mortensen estimator computed
from V which does not appear to follow a well-posed HJB equation. As a consequence, to obtain a computable
sequential estimator, one must choose between two alternatives:

- approximate the dynamics (1) with the penalized dynamics (5), resulting in an approximate Moretensen
estimator;

- define the stochastic filtering problem in terms of (19) and use the tools of stochastic filtering and
particle filtering [8] for a small but nonzero value of ε.

5. Appendix

5.1. Derivation of the robust Zakai equation

Lemma 5.1 (Robust Zakai equation). The random function pε satisfies the robust Zakai equation, adding some
Robin boundary conditions:

∂tp
ε(x, t)− y(t)h′(x)∂xp

ε(x, t) +
1

ε
Pε(x, t)pε(x, t) =

ε

2
∂2xxp

ε(x, t), (x, t) ∈ R+ × R+

ε

2
∂xp

ε(0, t) +
Yth

′(x)

2
pε(0, t) = 0, t ∈ R+,

(53)
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where

Pε(x, t) :=
h2(x)

2
− ε

2
Yth

′′(x)− 1

2
Y 2
t (h

′(x))2.

This recovers a result in [11] for robust filtering of reflected diffusion.

Proof. Thanks to Girsanov change of measure (see e.g. [1, 39]), it is sufficient to treat the case where
(

Yt√
ε

)
t≥0

is a standard brownian motion. Then, using Ito’s rule for stochastic differential calculus

dpε(x, t) = exp

[
−Yth(x)

ε

]
dqε(x, t) + qε(x, t)d exp

[
−Yth(x)

ε

]
+ d

[
exp

[
−Y·h(x)

ε

]
, qε(x, ·)

]
t

,

the quadratic cross-variation being given by

d
[
exp

[
−Y·h(x)

ε

]
, qε(x, ·)

]
t

= −q
ε(x, t)h2(x)

ε
exp

[
−Yth(x)

ε

]
.

Moreover, by Ito’s rule

d exp

[
−Yth(x)

ε

]
= −h(x)

ε
exp

[
−Yth(x)

ε

]
dYt +

h2(x)

2ε
exp

[
−Yth(x)

ε

]
dt,

using (20)

dqε(x, t) =
ε

2
∂2xxq

ε(x, t)dt+
qε(x, t)

ε
dYt,

this gives
d
dt
pε(x, t) =

ε

2
exp

[
−Yth(x)

ε

]
∂2xxp

ε(x, t)− h2(x)

2ε
pε(x, t),

noticing that

exp

[
−Yth(x)

ε

]
∂xq

ε(x, t) = ∂xp
ε(x, t) +

Yth
′(x)

ε
pε(x, t),

it is straightforward to obtain that

∂2xxp
ε(x, t) = exp

[
−Yth(x)

ε

]
∂2xxq

ε(x, t)− 2Yth
′(x)

ε
pε(x, t)

− pε(x, t)

[
(Yth

′(x))
2

ε
+
Yth

′′(x)

ε
.

]

Gathering everything

d
dt
pε(x, t) = Yth

′(x)∂xp
ε(x, t) +

pε(x, t)

ε

(
−h

2(x)

2
+

(Yth
′(x))

2

2
+
ε

2
Yth

′′(x)

)
+
ε

2
∂2xxp

ε(x, t),

which is the desired equation. The boundary conditions are directly obtained from the ones in (20). □

In equation (53), note that the random variable Yt just behaves as a parameter, which only appears inside the
coefficients. This parameter Yt being defined as the function ω ∈ Ω 7→ Y (t, ω), this can be seen as a family of
deterministic PDEs indexed by a parameter ω. At this point, it is only necessary to consider given realisations
of the trajectory, i.e. continuous deterministic functions (y(s))0≤s≤t. The remaining question will then be the
measurability of the solution in ω, in order to recover a stochastic process pε(ω, x, t) from solving a deterministic
PDE for each (y(s))0≤s≤t. This question is positively answered by the prominent works [13], [37] which even
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prove that considering C1 trajectories y(t) is sufficient. As in the whole paper, this allows to consider pε(x, t)
as a deterministic function which depends on a given C1 trajectory (y(s))0≤s≤t. The function pε(x, t) is thus
the solution of a linear parabolic PDE, for which strong C2 regularity can be shown using the classical theory.
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