75 research outputs found

    Editorial-Advances in Plant Autophagy

    Get PDF
    No abstrac

    Amino acid pattern and glutamate metabolism during dehydration stress in the 'resurrection' plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves

    Get PDF
    The present study analyses changes in nitrogen compounds, amino acid composition, and glutamate metabolism in the resurrection plant Sporobolus stapfianus during dehydration stress. Results showed that older leaves (OL) were desiccation-sensitive whereas younger leaves (YL) were desiccation-tolerant. OL lost their soluble protein more rapidly, and to a larger extent than YL. Enzymes of primary nitrogen assimilation were affected by desiccation and the decrease in the glutamine synthetase (GS, EC 6.3.1.2) and ferredoxin-dependent GOGAT (Fd-GOGAT, EC 1.4.7.1) activities was higher in OL than in YL, thus suggesting higher sensibility to dehydration. Moreover, YL showed higher total GS enzyme activity at the end of the dehydration stress and was shown to maintain high chloroplastic GS protein content during the entire stress period. Free amino acid content increased in both YL and OL between 88% and 6% relative water content. Interestingly, OL and YL did not accumulate the same amino acids. OL accumulated large amounts of proline and gamma-aminobutyrate whereas YL preferentially accumulated asparagine and arginine. It is concluded (i) that modifications in the nitrogen and amino acid metabolism during dehydration stress were different depending on leaf development and (ii) that proline and gamma-aminobutyrate accumulation in S. stapfianus leaves were not essential for the acquisition of desiccation tolerance. On the contrary, the accumulation of large amounts of asparagine and arginine in the YL during dehydration could be important and serve as essential nitrogen and carbon reservoirs useful during rehydration. In this context, the role of GS for asparagine accumulation in YL is discussed

    Absorption et assimilation du nitrate et recyclage de l’azote organique chez les plantes : intĂ©rĂȘt pour le colza

    Full text link
    CABI:20073191056International audienceBrassica napus (winter oilseed rape) is an important agricultural crop cultivated for oil, which can be used as an edible product or for industrial application, bioester for example. Despite the very high capacity of oilseed rape to take up nitrate, many authors have reported a very low recovery of nitrogen in field-grown crops whatever the level of N fertilizer applied. In this manuscript we describe the main biochemical and molecular mechanisms involved in nitrate uptake, reduction, assimilation and N recycling during the reproductive period to gain sufficient knowledge to determine the relative importance of environmental and genetic factors determining N management in plants. This understanding will provide the necessary background for improvement of oilseed rape varieties

    A New Role for SAG12 Cysteine Protease in Roots of Arabidopsis thaliana

    Get PDF
    Senescence associated gene (SAG) 12, which encodes a cysteine protease is considered to be important in nitrogen (N) allocation to Arabidopsis thaliana seeds. A decrease in the yield and N content of the seeds was observed in the Arabidopsis SAG12 knockout mutants (sag12) relative to the wild type (Col0) under limited nitrogen nutrition. However, leaf senescence was similar in both lines. To test whether SAG12 is involved in N remobilization from organs other than the leaves, we tested whether root N could be used in N mobilization to the seeds. Root architecture, N uptake capacity and 15N partitioning were compared in the wild type and sag12 under either high nitrogen (HN) or low nitrogen (LN) conditions. No differences in root architecture or root N uptake capacity were observed between the lines under HN or LN. However, under LN conditions, there was an accumulation of 15N in the sag12 roots compared to the wild type with lower allocation of 15N to the seeds. This was accompanied by an increase in root N protein contents and a significant decrease in root cysteine protease activity. SAG12 is expressed in the root stele of the plants at the reproductive stage, particularly under conditions of LN nutrition. Taken together, these results suggest a new role for SAG12. This cysteine protease plays a crucial role in root N remobilization that ensures seed filling and sustains yields when nitrogen availability is low

    Discovery of the biostimulant effect of asparagine and glutamine on plant growth in Arabidopsis thaliana

    Get PDF
    Protein hydrolysates have gained interest as plant biostimulants due to their positive effects on plant performances. They are mainly composed of amino acids, but there is no evidence of the role of individual of amino acids as biostimulants. In this study we carried out in vitro experiments to monitor the development of Arabidopsis seedlings on amino acid containing media in order to analyze the biostimulant properties of the twenty individual proteinogenic amino acids. We demonstrated that proteinogenic amino acids are not good nitrogen sources as compared to nitrate for plant growth. Biostimulant analyses were based on leaf area measurements as a proxy of plant growth. We developed the Amino Acid Use Efficiency index to quantify the biostimulating effect of individual amino acids in the presence of nitrate. This index allowed us to classify amino acids into three groups, characterized by their inhibiting, neutral, and beneficial effects regarding leaf area. Glutamine and asparagine demonstrated the most significant effects in promoting leaf area in the presence of nitrate supply. The stimulating effect was confirmed by using the L and D enantiomeric forms. Both L-glutamine and L-asparagine stimulated leaf area at low concentrations, emphasizing their biostimulating properties. Our plant growth design and AAUE index pave the way for the identification of other bioactive molecules in protein hydrolysates and for the comparison of biostimulant performances

    Transcriptional Regulation of Ribosome Components Are Determined by Stress According to Cellular Compartments in Arabidopsis thaliana

    Get PDF
    Plants have to coordinate eukaryotic ribosomes (cytoribosomes) and prokaryotic ribosomes (plastoribosomes and mitoribosomes) production to balance cellular protein synthesis in response to environmental variations. We identified 429 genes encoding potential ribosomal proteins (RP) in Arabidopsis thaliana. Because cytoribosome proteins are encoded by small nuclear gene families, plastid RP by nuclear and plastid genes and mitochondrial RP by nuclear and mitochondrial genes, several transcriptional pathways were attempted to control ribosome amounts. Examining two independent genomic expression datasets, we found two groups of RP genes showing very different and specific expression patterns in response to environmental stress. The first group represents the nuclear genes coding for plastid RP whereas the second group is composed of a subset of cytoribosome genes coding for RP isoforms. By contrast, the other cytoribosome genes and mitochondrial RP genes show less constraint in their response to stress conditions. The two subsets of cytoribosome genes code for different RP isoforms. During stress, the response of the intensively regulated subset leads to dramatic variation in ribosome diversity. Most of RP genes have same promoter structure with two motifs at conserved positions. The stress-response of the nuclear genes coding plastid RP is related with the absence of an interstitial telomere motif known as telo box in their promoters. We proposed a model for the “ribosome code” that influences the ribosome biogenesis by three main transcriptional pathways. The first pathway controls the basal program of cytoribosome and mitoribosome biogenesis. The second pathway involves a subset of cytoRP genes that are co-regulated under stress condition. The third independent pathway is devoted to the control of plastoribosome biosynthesis by regulating both nuclear and plastid genes

    Improving crop yield potential: Underlying biological processes and future prospects

    Get PDF
    The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant‐derived products. In the coming years, plant‐based research will be among the major drivers ensuring food security and the expansion of the bio‐based economy. Crop productivity is determined by several factors, including the available physical and agricultural resources, crop management, and the resource use efficiency, quality and intrinsic yield potential of the chosen crop. This review focuses on intrinsic yield potential, since understanding its determinants and their biological basis will allow to maximize the plant's potential in food and energy production. Yield potential is determined by a variety of complex traits that integrate strictly regulated processes and their underlying gene regulatory networks. Due to this inherent complexity, numerous potential targets have been identified that could be exploited to increase crop yield. These encompass diverse metabolic and physical processes at the cellular, organ and canopy level. We present an overview of some of the distinct biological processes considered to be crucial for yield determination that could further be exploited to improve future crop productivity

    Autophagie et ressources azotées (contrÎle nutritionnel et recyclage métabolique)

    No full text
    Les plantes sont des organismes statiques et tributaires des ressources minérales présentes dans leur rhizosphÚre. La remobilisation des nutriments est un processus qui permet une économie nutritionnelle et un recyclage de macro- et micro - nutriments qui sont le plus souvent limitants. Le rÎle du démantÚlement des chloroplastes au cours de ce processus est trÚs important pour le recyclage de l azote, puisque ceux-ci contiennent la majeure partie des protéines foliaires. Bien que les protéines chloroplastiques soient une source essentielle pour le recyclage de l azote foliaire, leur mécanisme de dégradation est mal connu. L autophagie, a été proposée comme mécanisme participant au recyclage des nutriments, notamment en situation de carence ou de limitation en azote. L autophagie, processus cellulaire de dégradation, représente un mécanisme de survie et d adaptation, par le recyclage et l élimination des protéines et organelles altérés.La détermination des flux d azote, entre la rosette et les graines par l utilisation du marquage à l isotope stable 15N chez des mutants d autophagie, nous a permis de montrer que l autophagie est nécessaire à la remobilisation de l azote. L analyse fonctionnelle des mutants d autophagie a permis de mettre en évidence de profondes perturbations métaboliques résultant dans l élévation du rapport C/N. Les modifications métaboliques observées montre que les mutants d autophagie ne présentent pas les signatures métaboliques habituellement retrouvées chez les plantes adaptées à la limitation en azote minéral, qu ils accumulent au contraire les composés azotés et sont pauvres en ressources carbonées. Les investigations ont également révélé que l autophagie est sélective envers certaines protéines. L activité autophagique a été évaluée en fonction de différents niveaux d expression d AtTOR et à la suite de l inhibition de son activité kinase. Ces résultats ont montré qu AtTOR, senseur du statut nutritionnel, est un régulateur négatif de l autophagie. L autophagie est une étape clef du recyclage nutritionnel en réponse à une situation de stress telle que la limitation en azote.Plants are static organisms dependent on minerals resources available in the rhizosphere. Nutrient recycling is a process allowing a nutritional economy and recycling of macro- and micro- nutrients, which are often limiting. The role of chloroplast dismantling during this process is very important for nitrogen recycling because chloroplasts contain the major part of foliar proteins. Albeit chloroplastic proteins are an essential source for foliar nitrogen recycling, their degradation process is not well understood. Autophagy has been proposed to participate in nutrients recycling, notably in nitrogen starvation or limitation. Autophagy, a cellular degradation process, represents a survival and an adaptation mechanism by recycling and eliminating defectives proteins and organelles.Based on nitrogen fluxes determination between the rosette and the seeds by using 15N labeling in autophagy (atg) mutants, the study has shown that autophagy is necessary for nitrogen remobilization. The functional analysis of atg mutants revealed deep metabolic perturbations resulting in elevated C/N ratio, marker of plant physiology status. The observed metabolic modifications are not the hallmarks of an adaptation to nitrogen limitation. Autophagy mutants indeed accumulate nitrogen compounds and present low carbohydrate contents. The investigations also revealed that autophagy is selective towards some proteins. Autophagic ativity has been evaluated function of different AtTOR expression levels and following AtTOR activity inhibition. Results have shown that AtTOR, a sensor of the nutritional status, is a negative regulator of autophagy. Autophagy is a key step for nitrogen recycling in response to stress situation like nitrogen limitation.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF
    • 

    corecore