641 research outputs found

    Female Flesh and Medieval Practice in the Later Middle Ages

    Get PDF
    My work explores the importance and presence of the female body in medieval religious practice as exemplified in medieval art, religious texts and hagiographies. My research shows that while the reasoning behind female imagery and imagery of the nude is disputed, the prevalence of mandorla-like images, images of the female nude, and images displaying the femininity of Christ suggest the meaningfulness to the medieval viewer. I discuss extensively Julia Kristeva’s writing on the woman as abject and the artistic experience as an element of religiosity. For this research I analyzed works by various artists including Robert Campin, Jan Gossaert and Jacob Cornelisz, as well as explore Caroline Walker Bynum’s work Fragmentation and Redemption: Essays on Gender and the Human Body in Medieval Religion, and The Lady as Saint: A Collection of French Hagiographic Romances of the Thirteenth Century by Brigitte Cazelles

    Dielectric properties of healthy and diabetic alloxan-induced lenses in rabbits.

    Get PDF
    Abstract The dielectric properties of the eye lens were studied for healthy and alloxane-induced diabetic rabbits in the frequency range from 500 Hz to 100 kHz electric field and temperatures from 25 to 50 °C. In the full temperature range, the average relative permittivity and dielectric loss values for a healthy lens are lower than those recorded for diabetic tissue. Dielectric relaxation of polar amino acids on the alpha-crystallin surface with a characteristic frequency of 7 kHz in the range of 25–50 °C for healthy and diabetic samples is accompanied by the activation energy of proton conductivity with an average values of 33 and 39 kJ mol−1, respectively. The permittivity decrement, which characterizes the size of the dielectric dispersion with a central relaxation time of 0.023 ms for a diabetic sample, is more than twice as high as for a healthy sample. Measurements on the rabbit eye lens were carried out at ambient temperature above and below the physiological range, since these conditions provide an appropriate pattern of dielectric behavior for the diagnosis of clinical dysfunction of the human lens

    Studies of new antiferroelectric liquid crystal based on quantum-chemical model

    Get PDF
    Physical properties of new thermotropic antiferroelectric liquid crystal have been studied. Experiments were done by use of complementary methods such as differential scanning calorimetry, polarizing optical microscopy and X-ray powder diffractometry. Acquired data from X-ray powder diffractometry was examined under application of quantum chemical approach. It has been found that compound studied exhibits stable enantiotropic antiferroelectric SmC_{A}^{*} phase in the wide temperature range while ferroelectric phase SmC^{*} is very narrow

    Mild hydration of didecyldimethylammonium chloride modified DNA by 1H-nuclear magnetic resonance and by sorption isotherm

    Get PDF
    The gaseous phase hydration of deoxyribonucleic acid and didecyldimethylammonium chloride (C19H42ClN) complexes (DNA-DDCA) was observed using hydration kinetics, sorption isotherm, and high power nuclear magnetic resonance. Three bound water fractions were distinguished: (i) a very tightly bound water not removed by incubation over silica gel, (ii) a tightly bound water saturating with the hydration time t(1)(h) (0.596 +/- 0.04) h, and a loosely bound water fraction, (iii) with the hydration time t(2)(h) (20.9 +/- 1.3) h. Proton free induction decay was decomposed into the signal associated with the solid matrix of DNA-DDCA complex (T-2S approximate to 30 mu s) and two liquid signal components coming from tightly bound (T-2L1 approximate to 100 mu s) and from loosely bound water fraction (T-2L2 approximate to 1000 mu s)

    Rehydration of CTMA modified DNA powders observed by NMR

    Get PDF
    The rehydration of salmon sperm deoxyribonucleic acid (DNA) and cetyltrimethylammonium chloride (C19H42ClN)(C_{19}H_{42}ClN) complexes was observed using hydration kinetics, sorption isotherm, and high power proton relaxometry (at 30 MHz). The hydration kinetics shows (i) a very tightly bound water not removed by incubation over silica gel (A0hA_0^{h} = 0.061 ± 0.004), (ii) a tightly bound water saturating at A1hA_1^{h} = 0.039 ± 0.011, with the hydration time t1ht_1^{h} = (1.04 ± 0.21) h, a loosely bound water fraction (iii) with the hydration time t2ht_2^{h} = (19.1 ± 3.2) h and the contribution progressively increasing with the air humidity. For the hydration at p//p0p//p_0 = 100%, after t0t_0 = (152.6 ± 2.5) h of incubation the swelling process begins. The swelling time was t3ht_3^{h} = (12.5 ± 5.4) h, and the swelling amplitude A3hA_3^{h} = 0.140 ± 0.016. The sorption isotherm is sigmoidal in form and is fitted by the Dent model with the mass of water saturating primary binding sites Δ M/m0m_0 = 0.102 ± 0.021. Proton free induction decay is a superposition of the immobilized proton signal (Gaussian, with T2ST_{2S}* ≈ 30 μs) and two liquid signal components coming from tightly bound (T2L1T_{2 L_1}* ≈ 100 μs) and loosely bound water fraction with the amplitude proportional to the mass of water added (T2L2T_{2 L_2}* ≈ 1000 μs)

    The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis

    Get PDF
    Next-generation sequencing of primary tumors is now standard for transcriptomic studies, but microarray-based data still constitute the majority of available information on other clinically valuable samples, including archive material. Using prostate cancer (PC) as a model, we developed a robust analytical framework to integrate data across different technical platforms and disease subtypes to connect distinct disease stages and reveal potentially relevant genes not identifiable from single studies alone. We reconstructed the molecular profile of PC to yield the first comprehensive insight into its development, by tracking changes in mRNA levels from normal prostate to high-grade prostatic intraepithelial neoplasia, and metastatic disease. A total of nine previously unreported stage-specific candidate genes with prognostic significance were also found. Here, we integrate gene expression data from disparate sample types, disease stages and technical platforms into one coherent whole, to give a global view of the expression changes associated with the development and progression of PC from normal tissue through to metastatic disease. Summary and individual data are available online at the Prostate Integrative Expression Database (PIXdb), a user-friendly interface designed for clinicians and laboratory researchers to facilitate translational research

    The Transcriptomic Landscape of Prostate Cancer Development and Progression: An Integrative Analysis

    Get PDF
    Next-generation sequencing of primary tumors is now standard for transcriptomic studies, but microarray-based data still constitute the majority of available information on other clinically valuable samples, including archive material. Using prostate cancer (PC) as a model, we developed a robust analytical framework to integrate data across different technical platforms and disease subtypes to connect distinct disease stages and reveal potentially relevant genes not identifiable from single studies alone. We reconstructed the molecular profile of PC to yield the first comprehensive insight into its development, by tracking changes in mRNA levels from normal prostate to high-grade prostatic intraepithelial neoplasia, and metastatic disease. A total of nine previously unreported stage-specific candidate genes with prognostic significance were also found. Here, we integrate gene expression data from disparate sample types, disease stages and technical platforms into one coherent whole, to give a global view of the expression changes associated with the development and progression of PC from normal tissue through to metastatic disease. Summary and individual data are available online at the Prostate Integrative Expression Database (PIXdb), a user-friendly interface designed for clinicians and laboratory researchers to facilitate translational research

    Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration

    Get PDF
    Surface potential of biomaterials is a key factor regulating cell responses, driving their adhesion and signaling in tissue regeneration. In this study we compared the surface and zeta potential of smooth and porous electrospun polycaprolactone (PCL) fibers, as well as PCL films, to evaluate their significance in bone regeneration. The ' surface potential of the fibers was controlled by applying positive and negative voltage polarities during the electrospinning. The surface properties of the different PCL fibers and films were measured using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM), and the zeta potential was measured using the electrokinetic technique. The effect of surface potential on the morphology of bone cells was examined using advanced microcopy, including 3D reconstruction based on a scanning electron microscope with a focused ion beam (FIB-SEM). Initial cell adhesion and collagen formation were studied using fluorescence microscopy and Sirius Red assay respectively, while calcium mineralization was confirmed with energy-dispersive x-ray (EDX) and Alzarin Red staining. These studies revealed that cell adhesion is driven by both the surface potential and morphology of PCL fibers. Furthermore, the ability to tune the surface potential of electrospun PCL scaffolds provides an essential electrostatic handle to enhance cell-material interaction and cellular activity, leading to controllable morphological changes
    corecore