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Dynamical system approach to phyllotaxis

F. d’Ovidio?* and E. Mosekild&"
Center for Chaos and Turbulence Studies, Building 309, Department of Physics, Technical University of Denmark,
2800 Lyngby, Denmark
2International Computer Science Institute, 1947 Center Street, Berkeley, California 94704-1198
(Received 13 August 1999

This paper presents a bifurcation study of a model widely used to discuss phyllotactic patterns, i.e., leaf
arrangements. Although stable patterns can be easily obtained by numerical simulations, a stability or bifur-
cation analysis is hindered by the fact that the model is defined by an algorithm and not a dynamical system,
mainly because new active elements are added at each step, and thus the dimension of the “natural” phase
space is not conserved. Here a construction is presented by which a well defined dynamical system can be
obtained, and a bifurcation analysis can be carried out. Stable and unstable patterns are found by an analytical
relation, in which the roles of different growth mechanisms determining the shape is clarified. Then bifurca-
tions are studied, especially anomalous scenarios due to discontinuities embedded in the original model.
Finally, an explicit formula for evaluation of the Jacobian, and thus the eigenvalues, is given. It is likely that
problems of the above type often arise in biology, and especially in morphogenesis, where growing systems are
modeled.

PACS numbd(s): 05.45—-a, 87.18.La

[. INTRODUCTION instance, by giving the spegdhe second rule specifies how
these leaves determine the angular position of the new pri-
Phyllotaxis is the botanical term for the characteristic geo-mordium.
metrical arrangements of leavémnd, by extension, of other The first rule involves a parameter, related to Richards’
botanical elements, like florets, seeds, and sgale shall  plastochrone rati$3], usually indicated withG. This is the
refer to all of these elements asimordia, as they are ge- parameter that will be varied when we come to study bifur-
nerically called in their early stage, or, with some abuse ofkations in the pattern forming process.
the language, agaves A characteristic of phyllotaxis is the Usually, one looks for patterns that are conserved by the
striking regularity of the spatial patterns that emerge, ofterdynamics, and finds some of the geometrical properties of
related to mathematical quantities such as the Fibonacciatural patterns: angles between subsequent leaves near the
numbers and the golden mean. This regularity has attractegblden mear(or, more generally, near noble numbeasd,
significant interest among physicists and mathematicians atonnecting primordia to the neighboring ones, patterns re-
least since the early treatment by the Bravais brotifigfs lated to Fibonacci numbers. The importance of these results
who referred to them aléving crystals For a review of the is that the model shows that geometrical properties that are
history of phyllotactic theories we refer to the recent surveyuseful for plants for optimizing light exposure or seed pack-
by Adler et al.[2]. ing can be explained by some general dynamical rules.
Phyllotaxis can be studied from many different view-  This approach was first exploited by Hofmeister in 1868
points, ranging from static geometrical and crystallographid4], and more recently by many others. Bernasconi and Bois-
considerations, over chemical reaction-diffusion equationsanadd5] worked on the elements needed to obtain cylin-
and dynamical systems theory to experiments with genetidrical phyllotactic patterns with two species, activator-
control or growth conditions. Here we are interested in ainhibitor chemical systems. Green, Style, and Rennigh
morphogenetical approach, in which these kinds of patternstudiedde novainitiation of patterns, inhibition, and stability
are studied by finding a few simple rules that mimic thefrom a biophysical point of view. Marzec and Kapraff de-
growth mechanisms around the apex of a plant. Primordiaived a sufficient condition for uniform spacing of leaves
are modeled as point®r disk9 formed at regular intervals connecting the model to noble numbdrg. Douady and
of time (one primordium for each ste@round a circlgthe  Couder obtained phyllotactic patterns in an experiment with
apey, and then moved away. Different rules can be usedmagnetic droplets and a bifurcation diagram through a nu-
However, in general this approach has some typical featureserical simulation[8—11]. Koch et al. [12] introduced a
(1) It involves a discrete time, iterative process, in which simplified model of phyllotaxis, and described generic prop-
at each step a new primordium is added on the periphery ddrties of the solutions. Levitov exploited an energetic ap-
the apex, and already formed leaves are moved away; proach on phyllotaxi§13], and showed that this kind of
(2) Two rules must be defined: the first one controls howpatterns can be obtained in flux lattices in layered supercon-
already existing primordia are advected from the afex  ductors[14]. Kunz[15] found analytical results about a gen-
eralization of the variational problem of Levitov and the ex-
periment of Douady and Couder.
*Electronic address: dovidio@ICSI.Berkeley.edu The present work is mainly concerned with bifurcations.
"Electronic address: Erik.Mosekilde @fysik.dtu.dk Denoting the angular difference between two subsequent
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PRE 61 DYNAMICAL SYSTEM APPROACH TO PHYLLOTAXIS 355

leaves as thdivergence anglea spiral phyllotactic patternis where wherek=0,1,2 . .. is the age of deaf (that is, the
defined as having all elements with the same divergencaumber of steps elapsed since its formatidt,, ; 14,1 is @
angle. Plotting the shared divergence angle of stable patterfignction on the unit circle that depends on the positions of
versusG, one can construct a bifurcation diagram for theexisting elements, as will be explained later.

algorithm. Although analytical studies have been performed |t js important to note that, after its formation, a leaf does
(especially we would like to mention the work of Levitov not change its angular position, and that the time law for the

cal systems theory cannot be straightforwardly applied at this

point, as phyllotaxis is related with a growing and expanding p =€k, ()
system. A consequence of this is that the algorithm differs

from a dynamical system by the fact that it maps a Vectorq ghtain Eq/(4), we have just to consider that the leaf starts
(posmons of the_emstlng leavemto a I.onger vectofposi-  \ith 1, and then apply Eq(1). This relation will be impor-
tions of the existing leavesiusthe position of the new one ¢ in the following, as it allows us to consider only ages
Thus, for instance, new terms have been proposed, likgnq angular coordinates.

quasibifurcationg 13] or asymptoticstate12]. _ Regarding the inhibitory potential, Douady and Couder
_ In the present work two main results are obtained. The,onosed using a relation in analogy with an electrostatic
first is a translation by which phyliotaxis, although associ-rep ision. Extending the sum to all the elements, and calling

ateq with an expandlng system, can bg descnbe_d in terms %fk(a) the distance between theh element and a point of
ordinary dynamical system theory. Besides offering tools forangular position on the unit circle

the study of phyllotaxis itself, we hope that this approach can
be helpful in the modeling of other analogous systems typi-
cal of morphogenesifike embryology, where growth and Hyi0 }(a):2 S
expansion play a fundamental role and often seem to hinder KK k dpkﬂk(a)
a direct application of dynamical systems theory.

The second result is the analysis of the bifurcation phe- More generally,
nomena that control the emergence and disappearance of pat-
terns, and the description of the roles of different growth
mechanismgthe expansion and the birth of a new element H{pk},{ak}(a):; V(dpk,ﬂk(“))’ 6
in determining the shape. In particular, a full bifurcation dia-
gram for stable and unstable patterns is analytically obtaine
and a method for obtaining eigenvalues is given.

®

QNhereV(d) can have different form, such @9, d™", etc.
It has been show9] that the behavior of the system is
qualitatively the same for a large class\offunctions. Also
Il. FROM THE ALGORITHM TO A DYNAMICAL SYSTEM in this work, we will not need to define explicitly. We will

A. Algorithm only requireV to be monotonically decreasing and smooth
(C3, for simplicity, but many of our results are valid even if

. The_ algorithm studied in. the present paper is based oW is discontinuous It is now useful to apply Eq€1) to (6),
ideas introduced by Hofmeister in 1868 and more recentlynanging the dependence frgm to kG:

revisited. In particular, we will use the set of rules proposed
by Douady and Couddr0].

(1) The space is flat and two-dimensional. Elements are H{pk}'{(,k}(a)zg Vie,o (@) =Hg g(a). (7)
points, and the apex is the unit circle. K

(2) The dynamics is an iterative process. ) ) _ )

(3) At each step, already existing elements are moved Summing up and compacting the notation, we define a

nate with the relation returns the angular position of the new element:

p— peC. &Y fo({Bd) =M (Ho (gy(@)). ®)

(4) At each step, after moving existing elements, & neWrys i pe the basic quantity, and we will rarely need to
element is added on the unit circdlthe apex The angular explicate it.
coordinate is chosen by finding on the unit circle the abso- Before proceeding, we want to specify the notation and
lute, leftmost minimum of an inhibitory potential generated .o terminology that V\;i" be used in the following. We use as
by already existing elements. It is necessary to specify Qynonymous the wordkeaf, primordium, and elemento
“right” or “left” in order to resolve degenerate situations, indicate the angular positic;n of theh Ieaf' we use the sym-
with more than one minimum with the same value. Calling, 6, while we will reserve the symba 'for the whole set
M the operator that gives the absolute, leftmost minimumof cc;(c;rdinates(i.e., 6=1{0,). We use the term inhibitory

and using polar coordinates, the new element has potential for the functioid s, and we shall evaluate it on the
unit circle. We use the symboM, for the operator that
gives the position of the absolute, leftmost minimum of a

function of @. To indicate a general angular coordinate, we
enew:Ma(H{pk},{Hk}( a))! (3) Wl” use ¢

Pnew=1, 2
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B. A straightforward modeling of the algorithm 06201
We first rewrite the model described in Sec. Il A with 0,=6,—fo(0)
formal definitions, starting from leaves. At each step, leaves } ’
are in rings of radiup,=e®¥, wherek represents the age of 6,=61—1c(0), (11

the leaf. The angular position of each leaf is determined at

birth by minimizing the inhibitory potential. At each step of ,

the dynamics, a new leaf is formed on the first ring, while all On+1=On—Ta(0).

others “jump” from their present ring to the next, outer one.

Thus we can compile all the information as a vector contain- This will be helpful at a later stage, when we want to

ing all angular positions in order of age. When we apply theconsider stable patterns. At this point we have something

dynamics, we move all the components one st#p,.{ Similar to a dynamical system, as we have an iterative

— 6,) and we add in the first position the angular coordinateé‘'map” and a “phase space.” However, there is a differ-

of the new leaf. It is important to note that at each step theence: the phase space is not well defined for a dynamical

vector length is increased by one. For example, we start witlsystem, as the vector changes its length. So 8ds.are not

one leaf, ing=0: a map from a space onto itself. To solve the problem we will
proceed as follows. First we will consider the simple case in

6=(0). which the number leaves is upper limited, introducing a

slightly different notation. Then we will extend this approach

The second leaf will grow on the opposite side of the apexi0 an infinite set of leaves.

0— 6= (1,0). C. Representing an upper limited number of leaves

Consider a system with a maximum number of leaves
The third leaf will be somewhere in between, eg/4: points in a bidimensional spacesay k<N, disposed orN
rings around the origin. Each ring can hold only one leaf, or
none. To represent a set of leaves in this system, we can use
two vectors with a component for each ring. The first will
contain the angular positions of leaves, and the second will
And so on. Thus we obtain a vector from the previous one:be just a place holder, each component tellinghwitO or 1,
if the corresponding ring has a leaf or nothing. So for in-
(0)— (,0)— (7l y7,0)— - - - stance, if we have only a Ieaf i.n the second ring , count-
ing from 0, and angular positiogy) the two vectorglet us
call them@ andb) will be

0— 0= (ml4,7,0).

The radial coordinate is always given py=e®X. This is

the reason why we move a coordinate to the right: to increase  6=(6q,¢,60,,63, ...,0n-1), b=(0,1,0...,0.

p we have to increase the index. Also, we remark that the (12
(angulaj position of the new leaf is a function of all the ) o )
already existing leaves, so, in general, Note that6;,i#1 can have any value. This is clearer fif,

instead of two real vectors, we consider a single complex
vector,b components being the radii arfdcomponents the

(60,61, .. .O0n)—(Fa(bo, - - - ,0n), 00,01, - - ,ON) angular coordinates:

9
x=X(6,b),
Here fg is the function that finds the absolute, left-most (13)
minimum in the inhibitory potential generated By, . . . .6y X:= by el .

as defined in Eq(8).
Writing this as a set of equations, we can define a functionp this case we consider points on the unit circle or in the
that, from an N-component vector §, generates an gyigin. If we do so, it is clear that angular components with

(N+1)-component vectod”: b,=0 can have any value, as they all are in the origin. We
also remark that the order of components in the vector is
0,="s(0), important, as the index of the coordinate tells us the radial
0 =0 position (the number of the circle occupied by the leaf
17— Y0»
0= 01, (10 D. Construction of the dynamical system

Now we apply the idea described in Sec. Il C to the full
0= On-1. model. As above, we start in the “largest” space that we will
need; that is, a space with vectors of infinite components,
more precisely, a space of successions. We will use one suc-
We now introduce a modification to E@10): we also cession for the angular positions of leaves, and another one
apply a rotation to always have the first new leaf in the originto track which positions are occupied by leaves and which
of the circle (@=0): are not. An example will clarify the idea. Let us call the first
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successiom and the secont. The successiob will be used IIl. STABLE PATTERNS AND FIXED POINTS
computingfg, for considering only those elements @that The above construction is useful in the sense that it places
contain a leaf, in this way: the phyllotactic model in a “standard” theoretical frame,
_ thus allowing us to apply typical techniques. Here we want
fe({Oh{bd) = Ma(Hyp ol @) to find all the stable and unstable patterns. To obtain this we
* simply look for fixed points. The condition is
=Ma( > vke,ek(mbk) . (9
k=0 Tx=x. (19

We start as usual with one leaf in zero. This me#&gs Applying this condition to Eq(17), we obtain
=0. To show that we have only the first leaf, the succession

b will be 05=0,
b={by=1b,=0 k>0}. 0h=0n-1—fs(6,b), n>0, 20
bO:]-v
Meanwhile, the elements af other than the first can be b.=b n>0
of any value: in fact, when we evaluatg, we will consider noEn-b '
only elements for whictb is equal to 1: the others, being _ _ _
multiplied byb,=0 are deleted. In other terms, if we use the  This, by induction, means
complex notation as in Eq.13), the angular positions of
elements with vanishingg component are unimportant as 0,=0,
they are all mapped into the origin. For the second step, 0,=0y—fa(6,b)=—Fs(6,b),
0o=0, 0,=—m, b={by=1b;=1,b,=0 k>1} 0,=0,—fs(0,b)=—2f5(6,b),
and so on. We can conclude as follows. _ _ __
Proposition 1 Consider the seX of pairs, On=0n-1~To(6,0)=—nfc(0,b),
o (21)
xe Xex={6,b}, (15 bo=1,
where by=bo=1,
b2:b1: y
0={6kt=0, b={buti—o, 6Oke[0.2m), bye{0,1}.
(16)
bn: bn*l_ 1,
Consider the maf acting onX, defined as follows:
X—TX, (17
Hence we have obtained the following result.
6o—0, Proposition 2 A point (pattern) x={#0,b} is a fixed point
6h— 0n-1—fa(6,0), n>0, (19 of Tif
bO_)ly an: _n¢7 nBO!
b—b (22
n—Dbh-1, Nn>0. b,=1, n=0,
Then Egs. (15—(17) define a (discrete time, infinite- with
dimensional dynamical system.
We make the following remarks. ¢="1s(6,b). (23

(1) By now, we have only written the phyllotactic algo-
rithm in a different form, such that it explicitly appears as a We make the following remarks.
dynamical system. As we have not required any properties (1) The second condition of Eq22) tells just that all
from the f 5 function (the function that gives the coordinate leaves must be forme(n this sense, as should be expected,
of the new lea¥, this construction can be applied to a large proposition 2 gives the “limit” pattern, with infinite ele-
class of phyllotactic models. ments.

(2) The two rules of the algorithm, the growth and the (2) From Egs.(22) and (23) we can clearly see that the
inhibitory interaction, are decoupled, one determining a shifgrowth and the inhibitory interaction play two different and
and the other the value of the new element. This separatiomdependentoles. The growth limits the class of fixed points
will be a persistent characteristic of the model. In particularto the set of patterns described by EB2); the interaction,
in Sec. lll we show how this fact is reflected in the determi-by Eq. (23), chooses the global parameter for the particular
nation of fixed points. pattern among this class. In other words, and from a biologi-
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180F
165[
150
135}
120}
105~

Fel@)-¢

0 0.2 0.4 G0-6 0.8 1 0 60 120 130 240 300 360

FIG. 1. Bif_urcatio_n diag_ram for fixed_ pointéstable _and un- FIG. 3. Plot of the functiorF o(#) — ¢ for G=0.77 (values of
stablg. The p|_cture is obtained by solving the_equatlﬁa(qs) ¢ in degrees As the paramete6 is reduced, the fold becomes
—¢=0 numerically. The value o is expressed in degrees. sharper, and finally breaks into a discontinuity, as in the inhibitory

potential a minimum is changed into a maximysee Fig. 4.
cal point of view, a different interaction will change the di-
vergence angles of the fixed patterns, but not the spiralhen the condition
shape.

(3) We can easily see that a stable pattern can only be a ¢=1s(6,b)
spiral[in fact, it must be a fixed point and thus have the form
6,= —n¢; if we calculate the divergence angle for any leaf, becomes
we obtain the same valuig;(6,b)].

(4) It is important to recall that here we have considered Fe(d)=¢. (26)

fixed points only, and not cycles or more complex structures. o . )
So, in principle, other nonequilibrium stable shapes, different_ 1hiS is an equation in just one variable and one parameter.
from spirals, can arise. This actually has been observed. SeEhe solutions to this equation gives the divergence angles of
for instance, Ref[16] for cycles coming from a period- all the fixed pomts, that is, of all the stable and_unstable
doubling bifurcation. patterns. Plottind-¢(¢) — ¢=0 in the ((_3,¢) plane(Flg. 1)_

(5) The first condition gives a necessary and sufficien@ives the exact graphizof the bifurcation diagram for fixed
condition for the divergence angle of a spiral to be a fixedPOints (potential Vy=d"*). Inspecting this bifurcation dia-
point. gram, some anomall_es are evident. Their study will be the

The importance of the last remark becomes clear if wdOPiC of the next sectiongFigs. 2-6.
take a couple of steps more. First, we consifjgrestricted
to spirals, that is, to points in which each leaf has the same  IV. ANOMALOUS BIFURCATION PHENOMENA

divergence angle and in which all leaves are formed: . .
g 9 As we now have a dynamical system and have determined

all the fixed points, it is natural to study how these fixed
Fo(¢)=fc(6,b), (24 points are generated or destroyed when varying the param-
eter G. Before applying standard methods we have to note

6,=—n¢, b,=1, n=0. (25

Fa@)-¢

; : : ; ; 135 150 165 180 195 210 225
0 G 10 18 240 a0 30 ¢

FIG. 4. Inhibitory potential for a spiral pattern with a divergence
FIG. 2. Plot of the functiorF¢(®)— ¢ for G=0.87 (values of  angle corresponding to 180° and f@r=0.77 (angles in degregs
¢ in degrees Two symmetric solutions appear as the function The function has still an extremum at 180°, but now it is a maxi-
begins to fold. mum.
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lim || T(x) = T(x)||=0. (28)

X—X

Hence we have to evaluate E@8). To do this, we start
rewriting explicitly the map[note also thak= (6,b) andx

-Qr —
o} =(6,b)]:
Ll.o
X—TX,
00—>0,
0,—0,_,—fs(0,b), n>0,
0 60 120 180 240 300 360 by—1,
¢ by—by 1, Nn>0.

FIG. 5. Plot of the functiorF¢(#) — ¢ for G=0.48 (values of
¢ in degrees As G is further reduced, two symmetric folds begin Then, for simplicity setting ¢="fg(6,b) and g

to form (around¢=110° and 250F. —— .
( ¢ & =fg(6,b), and evaluating the norm:

that the model considered is not continuous. We will proceed lim || T(x) = T(X)||

in two steps. Ko
(1) We will find the conditions under which the map is at

least locally continuous. In these cases, we will expect usual

©

=lim 3 a b ,e®-1-9_p_eit-1-9)

phenomena. ]
(2) Besides usual bifurcations, we have to expect some X
nonstandard bifurcation phenomena related to the disconti- N
nuities. We will investigate these anomalies. =lim lim 2 a X|b,_,e' (k-1

X—»; N— o0 k=1

A. Origin of discontinuities —Dby_,€' (§k71_$)|_ (30)

To study the discontinuities, we have to imbue our system
with a topology. Thus we use the complex notation for points
in phase space, and we introduce a usual norm for succe3Ma

Now we observe that we can always choogsudficiently
I) neighborhood ok in which for everyx we have

sion: —
bk: bk s Vk=<N
||x||=k2 a Mx/, a>1. (27)  (otherwise]|x—x||<a~"). Hence, close enough to this.g.,
=0 . . e
in a radius ofx less thara™N) we have
i . . N
Calling T the map, we will use as a necessary and suffi- 2 a*k|bk,1ei("k—1*‘”—Ek,le‘(;k—l*gﬂ
cient condition for continuity in a point: k=1
N — —
:E a Kellf-1-d) —gilbi1= @) (31)
k=1
Exchanging the limits in Eq.30) we can see that
- lim || T(x) = T(x)||=0% lim|p— ¢|=0. (32)
§0- XH; XH;
Ll.o
The main consequence @2) is that now we have iso-
lated the discontinuities, and we need to study them on a real
function instead of an infinite set of equations. Explicating
¢, we have
0 80 120 1$0 240 300 360 p=TFs(0,0)=M(Hyp (@)
FIG. 6. Plot of the functiorf¢(¢) — ¢ for G=0.38 (values of - M Vv —0)b 33
¢ in degrees Anomalous fold bifurcation: the two folds of Fig. 5 “ kZO el @= 0B 33

now touch the zero axis, giving rise to new fixed points. However, ) o _ _
the fold has already broken into a discontinuity. Instead of the Checking the continuity of Eq(33) as in the previous
saddle-node pair we have a solution and a discontinuity. case shows thai depends continuously on This, however,
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is not true for theM operator. In particular a necessary 180
condition for a discontinuity will be thatl has a minimum 1652
with zero second derivative or at least two equivalent 150
minima. Here we do not need more than a necessary condi- 135
tion. To prove that the condition is also sufficient we would 1207~
have to prove that varying th& parameter the inhibitory 9105
potential is perturbed generically. So we can conclude the 90F:
following. (7;2
Proposition 3 Consider in the dynamical system of 450
proposition 1, an equilibrium point with divergence angle a0F
Then the system is locally continuous if the following con- 15k
ditions both hold: 0 H H i H i
(1) There is only one absolute minimutne., there are 0 0.2 0.4 G°-6 0.8 1
not equivalent minima
(2) The absolute minimum is not degenerate: FIG. 7. Bifurcation diagram of fixed points and singularities
degreesvs G.
HY b,6(#)#0. (34)

dition for a discontinuity. Calculations for obtaining analyti-
) cally this point, for different potentials, can be found in Ref.
We make the following remarks. 16].
(1) Proposition 3 will be used in two ways. First, it states 14 ynderstand the other bifurcations, we can again follow
a sufficient condition under which the system is contmuousEq_ (26) after the first bifurcation for decreasing valuesGof
This will be required essentially for the computation of the Then we find that a fold appeat&ig. 5 and touches the
Jacobian. Second, it defines a regithe space where the ¢ __ s_0 axis at the bifurcation point. The only difference
condition does not holdwhere we have to expect unusual oy typical fold bifurcation is that before the contact a
bifurcation phenomena to appear. discontinuity developsgFig. 6). The discontinuity is of the

. (2) The condition is sufficient. To prove that the cqndition same type as for the-branch casézero second derivatiye
is also necessary we would have to show that varying3he 15 \ve have a typical case, in which after a first symmetry-

parameter the inhibitory potential is perturbed genericallyyreaking bifurcation other bifurcations occur from the same
Although this seems reasonalgnd is observed in numeri- phenomenon; however as now the system is no longer sym-
cal simulation, we limit our analysis to the sufficie_ncy. metric, the bifurcations become geneftbe break of sym-

(3) If the above conditions hold, the system is at leastyetry acts as a generic perturbatiodsually, we have pitch-
continuous. However, as will be shown in Appendix B usingfq ks that are changed into folds. In our case we have the

the implicit function theorem, the system is also differen-game sjtuation, with the only difference being the presence
tiable as many times as the first derivative of the inhibitory ¢ 5 discontinuity that removes the unstable solution.
potential. Summing up, the phenomenon for the second bifurcations
is foldlike, with a collision between a stable solution and a
B. Anomalous bifurcations due to discontinuities discontinuity. The situation is displayed in Fig. 7. Actually,
. ) ) o we can think of the discontinuities as generalized saddle so-
Now we investigate the effect of discontinuity on the ap-|ytions. This role is also confirmed if we compare the posi-
pearance and disappearance of equilibria. Most of the analyisns of the discontinuities in respect tdsection of a basin
sis will be performed studying numerically the behavior of 4t attraction: then we find that they define the boundaries, as
the real function(26) for different values ofG (see Fig. 1. ysyally saddles in fold bifurcations do. See Fig. 8.
Looking at the bifurcation diagram of fixed points, there are

at least two anomalous things that are evident. The first is the
interruption of thew branch(at G~0.79). The second one is
the abrupt births of branches following the golden branch. Till now we have followed a dynamical approach for
We remark that in this diagram all fixed points, stable andstudying the phyllotactic model. However, there is also a
unstable, are plotted. So the missing solutions do not collidstatic viewpoint, in which one tries to obtain the phyllotactic
with other solutions, nor do they stop because of a change ipatterns by defining a function that measures the efficiency
stability (for example by a Neimark-Saker or period- by which elements are put together. This can mean, for in-
doubling bifurcation. They are simply removed. To under- stance, how much they are exposed to lijeaves, or how
stand this we study Eq26) and follow the = branch for closely they are packed togethseeds Here our aim is not
decreasings (Figs. 2—6. Calculating eigenvaluesee Ap- an investigation of the connections between the static ap-
pendix B, we find that the solution becomes unstable, givingproach and the dynamical orisee, for example, Rédf7] or

rise to two nodegFig. 2. Then the tangency of Eq26) [15]). Instead, we are interested in finding the “hidden” un-
becomes infinite at the point of disappearance, and a discostable patterns. We especially want to find a way to circum-
tinuity arises(Fig. 3). The reason for this is simple: in this vent the discontinuities of the map described in Sec. IV.
point the inhibitory potential for a spiral with divergence Since the discontinuities arise from the dynamics, to avoid
angle of = changes the concavity, becoming a maximumthem we study the system statically, deriving a potential-like
(Fig. 4); however, this, as described in Sec. IV A, is a con-function for our system. The function we will look for shall

V. STATIC APPROACH
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180 The set of solutions of Eq(35) contains all the fixed
%M‘ patterns. The next step is to rewrite E85) as the derivative
1501 of a function:
d d <
GaSe(@=| go 2 Viclatke) (36)
= bea
It is not difficult to obtain an explicit form foSg:
93 Vieta ko || o= S Vigtatno)
da =0 P=a | & kG
=«
0.6 0.8 1 "
G !
- _ _ =2 Vie((k+1)a);  (37)
FIG. 8. Singularities(degrees as boundaries of the basins of k=0
attraction. For each point, a spiral is first constructed witlas a
divergence angle, an@ as a parameter. The color represents thethus
divergence angle of the final pattern reached. Singularities seem to 6
bound the basins, as saddle solutions in saddle-node bifurcations _ ’
usually do. Se(¢)= Jo k§=:0 Vig((k+1)a)da
have all fixed points in its extrema. The main advantage of * 1
this approach is that the class of extrema is larger than the = 2 K+ 1) Vig((k+1) ). (39
k=0

one containing fixed points, and now there is no discontinu-
ous dynamics that “filters” it. As we shall see, using all
extrema we will be able to find the missing saddle points an
to construct a typical, continuous bifurcation scenario.

ANe can now conclude the following
Proposition 4 The dynamical system of Proposition 1
admits a smooth functioBg(¢) for which all fixed points

are extrema has the form
A. Deduction So(¢)

oo

We want to find a function by which all fixed patterns are . 1
extrema. We proceed as follows. Se(d’)'_go (k+1) Vic((k+1)¢). (39
The relation for fixed points is given by E6), that is,
We make the following remarks.

Fo(d)=¢, (1) Equation(39) resembles a potential, as all fixed points
of the dynamical system correspond to extrema. It can be
seen as a measure of the packing efficiency minimized by the
system.

Fo(¢)=1c(0.b), (2) To obtain Eq.(39) we have used a necessary but not
sufficient condition: in fact by doing this we consider not
only the absolute, leftmost minimum, but also relative
minima, maxima, and inflection points with vanishing slope.

Fg is the function that gives the position of the absolute, | yhis way, we have avoided the discontinuities of the
leftmost minimum of the inhibitory potential generated by aoperator, andas shown in the Sec. V)Bwe are now able to

spiral given the divergence angle. Writifge explicitly  fing the patterns deleted by the discontinuities.
gives

where

0,=—n¢,b,=1, n=0.

Fo(d)=fo({f=—ko}ib=1)= M (H,p o(a)) B. Maxima of the packing energy as saddle solutions

Now we came back to the problem of the missing saddle
solutions. We have noted that the fixed points of the dynami-
cal system defined in proposition 1 do not coincide but are
contained in the set of the extrema of ®gfunction. In Fig.

The positions of the minima are contained in the set of thé® we plot minima and maxima @&s. We can observe that
zero first derivative points, and thus we differentiate withthere are no more discontinuities. In fact, in the static ap-
respect too and equate the result to zero. Also, as we argoroach we do not have to calculate the absolute minimum,
looking for fixed points, we apply conditiof23), that is, the  and thus all operators are continuous. Now let us come back
position of the minimum and the divergence angle of theto the problem of the “missing” unstable solutions. If we
spiral must be the same: compare Fig. 1 with Fig. 9 we can see that, in addition to the

stable solutions, new solutions appear, corresponding to
maxima or inflection points with vanishing slope 8.
=0. (35  They collide with the stable solutions as in a typical fold
d=a bifurcation. Considering the derivation 8§, a solution be-

ZMQ

> Vigla+ke)
k=0

d o]
da & Viclatke)
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_FIG. 9. Maxima and minima of the functio; (degrees FIG. 10. Plot of the functiorFg(¢)— ¢ for G=0.05 (value of
Minima are plotted more darkly. The extrema 8§ include all 4 iy degrees WhereG— 0, the behavior of the function becomes
equilibria of the system. The complementary points correspond t‘&omplex, and a discontinuity seems to appear for every rational
patterns in which the inhibitory potential has a maximum, and arg, e of ¢/360°, and a zero for every noble number.
thus absent from Fig. {the M operator only gives minima

longs to Fig. 9 and not to Fig. 1 if it corresponds to a spiralconsidering all of these a new family of patterns appears,

pattern in which the inhibitory potential has a maximum orthk‘;’It is connected to fixeq points like in g'usual fold .scer'1ario.
an inflection point, and not a minimum, when evaluated as 4 '€ results are summarized in proposition 4 and in Figs. 9

function of the divergence angle. and 10.
? J Finally, Appendixes A and B give a method by which the

dynamical system can be approximat@d C° topology by
a finite-dimensional one. For this latter system, an explicit
In Sec. Il the phyllotactic algorithm was translated into aform for the Jacobian is given, allowing one to calculate
well defined dynamical system, and the result is summarize@igenvalues.
in proposition 1 where a discrete-time, infinite-dimensional The main aim of this work has been to show that the
dynamical system is obtained. Then Sec. lll imposed thehyllotactic algorithm can be translated into a dynamical
condition for a point to be fixed and deduced two equationsystem and then benefits from the already developed, analyti-
that characterized both stable and unstable pattpnoposi-  cal tools from dynamical systems theory. From this point of
tion 2). In particular, from these equations it was seen thaview, Secs. llI-V are just some possible examples. Other
growth and inhibitory interactions play two independentfurther possibilities can be the study of E@3) with center
roles: the growth mechanisiithat is, the fact that one pri- manifold theory, to understand the reduction from an
mordium is added and the other ones are pushed Jawaynfinite-dimensional space to a one-dimensional equation; an
bounds the choice of fixed patterns to the class of spiralsgxtension of the analysis of Sec. Ill to cycles; a theoretical
meanwhile, the inhibitory interaction determines the diver-analysis of the anomalous bifurcation, that here is mainly
gence angle antespecially the bifurcations of the solutions numerical; an investigation of the discontinuities of the sys-
through a one-dimensional functioiEq. (23)]. Figure 1  tem, aimed at understanding if they have a biological mean-
summarizes these results, showing the full bifurcation diaing or are just an artifact of a simplified model; and many
gram for fixed points as the loci of zeroes for E3). others. We consider two possible further approaches to be of
Then bifurcations were studied. First, Sec. IV A showedparticular importance.
that the map is not continuous. Thus we started to look for The use of center manifold theory should give a good
conditions under which the system is at least locally continuinsight into the mechanisms by which a global propgey
ous, and where usual phenomena arise. Sufficient conditiorg®mmon divergence anglés selected by the local interac-
for local continuity were obtained in proposition 3, showing tions among leaves and the apex.
that discontinuities in the dynamical system are entirely de- We have shown that locally, i€° topology, the system
termined by Eq(23). Then, in Sec. IV, anomalous bifurca- can always be approximated by a system with a finite num-
tions due to discontinuities were studied. A foldlike phenom-ber of leaves. This has been useful to compute the Jacobian
enon was found where, instead of the usual saddle-node paind then to estimate the eigenvalues. However, there is a
a stable solution collides with a discontinuity. Numerical cal-deeper meaning. As the system is qualitatively equivalent to
culations displayed in Fig. 8 showed that the discontinuitiest model with a finite number of elements, it follows that each
also play the role of saddle solutions as boundaries of théifurcation is characterized by a critical dimension number
basins of attraction. (the minimum number of leavgbelow which it cannot be
Aiming to recover the usual scenario, Sec. V approache@bserved.
the model in a static way, trying to circumvent the singulari-
ties due to th_e dynamics. To c_jo so, (ld:ongtructively _ ACKNOWLEDGMENTS
showed the existence of a potential-like function, for which
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partly supported the work. 6.0, 1—fa(6,b), 0<n<N, (A7)
ﬁn—>0 n=N,

APPENDIX A: A FINITE APPROXIMATION
b0—>1,
The dynamical system obtained in Sec. Il is useful in
obtaining an exact relation for fixed points. However, it is bn—=bp-1,  O<n<N, (A8)
infinite dimensional. This can be a problem, for instance, b,—0, n=N,

when calculating eigenvalues, as their number is also in prin-

ciple infinite. In practice, noting that the inhibitory contribu-

Now we will compare the truncated system as defined in

tion of each leaf decreases with the age, a natural idea is {q. (A6) with the original ongproposition 1. In particular,
truncate the infinite-dimensional system considering onlywe want to show that in th€® topology of continuous maps

leaves younger than a certain dgéthat we can expect will

(locally) defined onX the two systems are close; that is,

depend onG). This approach can be formalized, showing that for sufficiently large\,

that a truncated system is a “good” approximation in the
sense that it is close to the original oneGA as much as we
want, providing thatN is sufficiently large. An important

[Tn—Tll<e, (A9)

consequence of this is that, invoking genericity, the two sysyy in other words,

tem will share the samét least local bifurcation scenario.
Moreover, this approach will give us a way to estimate the
eigenvalues, even if apparently the two systems have a dif-
ferent dimension, and thus a different number of eigenval-
ues.

We will proceed as follows. First we will write the trun-
cated system in a form by which it can be compared to the
original one. Then we will measure the distance between the
two. Finally, we explicitly derive a formula for the Jacobian
of the truncated system. In all of this section, we require the
systems to be at least continuous. This means that our resu
will apply under the(sufficieny continuity conditions of
proposition 3, and that the results will havdogal validity
only.

Using the same notation as in proposition 1 for the trun-
cated system, we can formally write the phase space as

N—o

[[Tn—TI|=su | Tax—Tx|Dxca

lim || Ty—TI|=0.

N—x

(A10)

Of course we have to specify the norm

(A11)

where ) is the (open set where the local conditions of
Rgoposition 3 hold:

lim sup || T\x—Tx||)xc 0
N— o

N
= lim (sur{ > a Nb,_ el (k-1

XN S XN<=>XN={0N ,bN}, (Al) o
_bk_lei(9k717¢N)| + E afk
N N k=N+1
0={0tv=0, b={bitx—o. 6Oe[0,2m), be{0,L
(A2) N
, = lim (sur{ > akbkl|ei(¢)—e‘(¢N)|)
Then the equation for the map becomes: N k=1
Xn— ThXN (A3) + > ak]. (A12)
k=N+1
We can drop the second term of E#\12), as it is the
Oh— 01~ Ten(6b),  0<n<N, remainder of a geometric convergent series. Also, we can
bo—1, (A5) overestimatd Eq. (A12)], considering allb, different from
bp—b,_1, 0<n<N. Zero:

wheref s \ is obtained by truncating the series of Et4) to

lim sup|| TaX—TX|Dyeco

N— oo

the N-th term.

However, we cannot compare two systems acting on dif-
ferent dimensional spaces. Thus we need to add “dummy”
(i.e., decoupledequations for the other variables. To do so
we suspend EqAL) in the infinite-dimensional spaceé in
the following way:

Xx—TrX, (A6)

k=1

N— o0

N
< lim su;{ > a kel=d—gl(=dn)|

1 . )
i i(—¢) _ gi(—¢n)
S(l—l/a) lim sup|e e'(mon)),

N— o0

(A13)
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But Eg.(A13) converges to zero, as, under continuity condi-acting on the firsN coordinates, the other on the rest. It is
tions of proposition 3gy— ¢ asN—co. Thus we can con- easy to see that the second one is just a constant, thus having

clude the follows a null linear partand thus all zero eigenvalued/eanwhile,
Proposition 5 Consider the dynamical systeth7) (full for the Jacobian part of the first operator we can write

system, the parametric dynamical systefA6) (truncated _

system and the norm of Eq(A1l). Then, under the conti- T\ .

nuity conditions of proposition 3, the two systems are locally Ji =ox O<i,j=N. (B3)

e —CO close; that is, for everg>0 there exists aiNy>0 :

such that Using forx a complex notation as in EqL3), Eq. (B3) is

well defined. However, we can simplify it if we consider

ITn=TlI<e,  VYN>No. (Al4)  that, after(at mosi N steps, all the firsN b, are equal to 1.

Thus if we will use the Jacobian on singulariti@iged points
or cycles, we can restrict our calculation only to the angular
coordinate, and thus write

We make the following remarks.

(1) The result is localin a region in phase and parameter
space where the system is continuous

(2) Proposition 5 has an obvious practical meaning. In- oTi
voking it and genericity, we can study the behavior of the N
phyllotactic system considering only a finite-dimensional
model. In this work we will not go further. However, there is C
another interesting result that emerges from it. The truncatefXPlicating Ty,
system is a system in which only the contribution of the last
N leaves is retained. This means that there(atege) criti-
cal values ofN (that is, a critical number of leaveshat
characterize local bifurcations, a sort of intrinsic dimension
of the phenomena. Thus a bifurcation also corresponds to a 9
critical value of G by which this number jumps from an Ji,j=a(0i_1—¢)=5i_1,j—
integer to another. Inspecting E(R9) and Fig. 9, it is not ]
difficult to hypothesize that this number must increase with ,
decreasings, and must be greater than the number of equi—Here 4 -1; denotes Kronecker's delta.
L . - Hence we have to compute
libria. In fact, theSg function must have a minimum for each
equilibrium, and it is the sum of single maximum functions. i
Preliminar, numerical calculations confirm this hypothesis.

(3) Proposition 5 guarantees that itasvayspossible to
approximate the system with a finite one. However, it doe
not give a method to estimate how laryemust be in order
to maintain the same bifurcation structure.

Ji,j‘=(9—0j, (B4)

Jo;=0 (B5)

— <i<N.
(991_, 0<i<N. (B6)

r?_ﬁj' (B7)

%xplicating ¢, we have

p=Fs(0,b)=M,(Hgypc(a)). (B8)

APPENDIX B: JACOBIAN Thus, the following must also hold:

Here we derive a formula to compute explicitly the Jaco- d
bian for_the approximated syst_em. Applymg the rgsult from _He,b,G(a)|a:¢:0- (B9)
Appendix A, we can then use it to approximate eigenvalues da
of the original system.

We start by rewriting the equations that define the trun- That is, ¢ is a solution ofHy, 5(a)=0. Now, under
cated system, adopting for simplicity the notation conditions of proposition 3 we can apply the implicit func-
=fg(6,b): tion theorem and, choosing, 6y, ... ,0y as independent

variables, claim that

X—TyX, (BY)
H’H,b,G(a):O
60—0, o . — .
0.0, 1—d 0<n<N, implies the(local) existence of an implicit function
6,—0 n=N, a=a(by, ...,0y), (B10)
bn . (BZ) ( 0 N
0% differentiable as many times &', for which
b,—b,_1, 0<n<N,
’ ! -1

b,—0, n=N. da _ dHype[dHgpe

a0; 90 da ' (B1)

Now we shall proceed backwards in respect to the defini-
tion of the truncated system, observing that the dynamics oo we can insert EqB11) into Eq.(B6), and obtain
the firstN coordinates is decoupled from the others. So we
can decompose the map of E&1) into two operators, one Jo;=0, (B12)
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IHype(Hipe| .
Jij=06i-1;t 26, (—(3’01 , 0<i=N.
(B13)
ExplicatingH’,
q /(N
Hppola)= d—a( kgo Vig(a— 9k)) ., (B19
and defining two coefficients
MHpbc )
j==a—0j=—Vj(;(Ol—9]'), (815)

oH’ N

N
9,06 v
a—a—go (Viala—6y)= go Ck, (B1o)
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0<i<N.

Jii=oi-1j— W —, (B19)

> Cy
k=0

We make the following remarks.

(1) Although for the Jacobian we are interested in the first
derivatives only, the implicit function theorem allows us to
obtain further derivatives, as far as the inhibitory potential is
differentiable.

(2) Inspecting Eq(B17) shows that the Jacobian is a ma-
trix with ones on the diagonal below the principal one, plus
coefficients ¢ C;/A) that are the same for all rowthey do
not depend on). Although this expression is enough for
explicitly obtaining the Jacobian, the simple and compact
form of Eq.(B17) suggests the possibility of obtaining con-
ditions on the eigenvalues. However, we will not pursue this
investigation in the present paper.

(3) The use of the implicit function theorem to obtain the

we thus obtain the following important relation that gives thepartial derivative ofTy can also be made, in the same way,

Jacobian:

30;=0, (B17)

for the full system, replacing sums with series and checking
convergencesthat, for instance, is always obtained for the
class of potentials of Sec. IHA
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