22 research outputs found

    Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844–848

    Get PDF
    Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000–3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons—Leu844, Cys845, Ala846, Leu847, and Gly848—located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844–848 exists and will be valuable in the management and genetic counseling of a significant number of individuals

    Scintillator ageing of the T2K near detectors from 2010 to 2021

    Get PDF
    The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9–2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3–5.4% per year, while the short component of the attenuation length did not show any conclusive degradation

    Benign Peripheral Nerve Sheath Tumors: Neurofibromas, Schwannomas, and Perineuriomas

    No full text

    Measurements of the νμ\nu_{\mu} and νˉμ\bar{\nu}_{\mu}-induced Coherent Charged Pion Production Cross Sections on 12C^{12}C by the T2K experiment

    No full text
    We report an updated measurement of the νμ\nu_{\mu}-induced, and the first measurement of the νˉμ\bar{\nu}_{\mu}-induced coherent charged pion production cross section on 12C^{12}C nuclei in the T2K experiment. This is measured in a restricted region of the final-state phase space for which pμ,π>0.2p_{\mu,\pi} > 0.2 GeV, cos(θμ)>0.8\cos(\theta_{\mu}) > 0.8 and cos(θπ)>0.6\cos(\theta_{\pi}) > 0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured νμ\nu_{\mu} CC coherent pion production flux-averaged cross section on 12C^{12}C is (2.98±0.37(stat.)±0.31(syst.)+0.490.00(Q2model))×1040 cm2(2.98 \pm 0.37 (stat.) \pm 0.31 (syst.) \substack{ +0.49 \\ -0.00 } \mathrm{ (Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The new measurement of the νˉμ\bar{\nu}_{\mu}-induced cross section on 12C^{12}{C} is (3.05±0.71(stat.)±0.39(syst.)+0.740.00(Q2model))×1040 cm2(3.05 \pm 0.71 (stat.) \pm 0.39 (syst.) \substack{ +0.74 \\ -0.00 } \mathrm{(Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Scintillator ageing of the T2K near detectors from 2010 to 2021

    No full text
    The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9--2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator

    Measurements of the νμ\nu_{\mu} and νˉμ\bar{\nu}_{\mu}-induced Coherent Charged Pion Production Cross Sections on 12C^{12}C by the T2K experiment

    No full text
    International audienceWe report an updated measurement of the νμ\nu_{\mu}-induced, and the first measurement of the νˉμ\bar{\nu}_{\mu}-induced coherent charged pion production cross section on 12C^{12}C nuclei in the T2K experiment. This is measured in a restricted region of the final-state phase space for which pμ,π>0.2p_{\mu,\pi} > 0.2 GeV, cos(θμ)>0.8\cos(\theta_{\mu}) > 0.8 and cos(θπ)>0.6\cos(\theta_{\pi}) > 0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured νμ\nu_{\mu} CC coherent pion production flux-averaged cross section on 12C^{12}C is (2.98±0.37(stat.)±0.31(syst.)+0.490.00(Q2model))×1040 cm2(2.98 \pm 0.37 (stat.) \pm 0.31 (syst.) \substack{ +0.49 \\ -0.00 } \mathrm{ (Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The new measurement of the νˉμ\bar{\nu}_{\mu}-induced cross section on 12C^{12}{C} is (3.05±0.71(stat.)±0.39(syst.)+0.740.00(Q2model))×1040 cm2(3.05 \pm 0.71 (stat.) \pm 0.39 (syst.) \substack{ +0.74 \\ -0.00 } \mathrm{(Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Measurements of the νμ\nu_{\mu} and νˉμ\bar{\nu}_{\mu}-induced Coherent Charged Pion Production Cross Sections on 12C^{12}C by the T2K experiment

    Get PDF
    International audienceWe report an updated measurement of the νμ\nu_{\mu}-induced, and the first measurement of the νˉμ\bar{\nu}_{\mu}-induced coherent charged pion production cross section on 12C^{12}C nuclei in the T2K experiment. This is measured in a restricted region of the final-state phase space for which pμ,π>0.2p_{\mu,\pi} > 0.2 GeV, cos(θμ)>0.8\cos(\theta_{\mu}) > 0.8 and cos(θπ)>0.6\cos(\theta_{\pi}) > 0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured νμ\nu_{\mu} CC coherent pion production flux-averaged cross section on 12C^{12}C is (2.98±0.37(stat.)±0.31(syst.)+0.490.00(Q2model))×1040 cm2(2.98 \pm 0.37 (stat.) \pm 0.31 (syst.) \substack{ +0.49 \\ -0.00 } \mathrm{ (Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The new measurement of the νˉμ\bar{\nu}_{\mu}-induced cross section on 12C^{12}{C} is (3.05±0.71(stat.)±0.39(syst.)+0.740.00(Q2model))×1040 cm2(3.05 \pm 0.71 (stat.) \pm 0.39 (syst.) \substack{ +0.74 \\ -0.00 } \mathrm{(Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Scintillator ageing of the T2K near detectors from 2010 to 2021

    No full text
    International audienceThe T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9–2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3–5.4% per year, while the short component of the attenuation length did not show any conclusive degradation
    corecore