1,165 research outputs found

    The interaction of message content, media sequence, and product involvement: an examination of intended message content sequences across a two-channel strategic IMC effort

    Get PDF
    Master of ScienceDepartment of Journalism and Mass CommunicationsCurtis MatthewsIntegrated marketing communications strategies are being utilized more and more by practitioners who wish to reach their audiences in different ways at different times. However, the omnipresence that results from these multi-channel campaigns presents a new challenge for marketers, as their message and channel sequences may or may not be experienced in the order intended. Past literature has shown that both message order and channel sequence do matter. However, existing literature has not examined intended message sequences where the first channel “teases” the more comprehensive information available in the second channel. Therefore, the aim of this study was to bridge some of the gaps in past research by exploring message content order effects and channel sequence effects across intentional sequences for both high- and low-involvement product categories through the lens of the Elaboration Likelihood Model. A 2 (message content order: tease-to-answer versus answer-to-tease) by 2 (medium sequence: print-to-online versus online-to-print) by 2 (product involvement: high- versus low-involvement) mixed factorial experimental design was conducted to explore how message content order, channel sequence, and product involvement level affected evaluations of brand and message, as well as perceived behavioral intent. The findings indicated that message content order had significant influence over brand and message evaluation, with the tease-to-answer order producing the highest evaluations of brand and message. The findings also indicated that the online-to-print sequence was only effective for increasing behavioral intent under high-involvement conditions. Implications for marketing practitioners and future research are discussed

    The evolution of stable silicon isotopes in a coastal carbonate aquifer on Rottnest Island, Western Australia

    Get PDF
    Dissolved silicon (dSi) is a key nutrient in the oceans, but data regarding Si isotopes in coastal aquifers are not widely available. Here we investigate the Si isotopic composition of 12 fresh and 16 saline groundwater samples from Rottnest Island, Western Australia, which forms part of the world's most extensive aeolianite deposit (the Tamala Limestone formation). In total, two bedrock samples were also collected from Rottnest Island for Si isotope analysis. The δ30Si values of groundwater samples ranged from −0.4 ‰ to +3.6 ‰ with an average +1.6 ‰, and the rock samples were −0.8 ‰ and −0.1 ‰. The increase in δ30Si values in fresh groundwater is attributed to the removal of the lighter Si isotopes into secondary minerals and potentially also adsorption onto Fe (oxy)hydroxides. The positive correlations between δ30Si values and dSi concentrations (ρ = 0.59; p = 0.02) and δ30Si values and Cl, but not dSi and Cl concentrations, are consistent with vertical mixing between the younger fresh groundwater and the deeper groundwater, which have undergone a greater degree of water–rock interactions. This has produced a spatial pattern in δ30Si across the aquifer due to the local hydrogeology, resulting in a correlation between δ30Si and tritium activities when considering all groundwater types (ρ = −0.68; p = 0.0002). In the deeper aquifer, the inverse correlation between dSi and Cl concentrations (ρ = −0.79; p = 0.04) for the more saline groundwater is attributed to groundwater mixing with local seawater that is depleted in dSi (< 3.6 µM). Our results from this well-constrained island aquifer system demonstrate that stable Si isotopes usefully reflect the degree of water–aquifer interactions, which is related to groundwater residence time and local hydrogeology. Our finding that lithogenic Si dissolution occurs in the freshwater lens and the freshwater–seawater transition zone on Rottnest Island appears to supports the recent inclusion of a marine–submarine groundwater discharge term in the global dSi mass balance. Geologically young carbonate aquifers, such as Rottnest Island, may be an important source of dSi in coastal regions with low riverine input and low oceanic dSi concentrations

    Effects of okadaic acid on the activities of two distinct phosphatidate phosphohydrolases in rat hepatocytes

    Get PDF
    AbstractIncubation of hepatocytes with okadaic acid displaced the N-ethylmaleimide-sensitive phosphatidate phosphohydrolase from the membrane fraction into the cytosol and partially prevented the oleate-induced movement of phosphohydrolase from cytosol to membranes. However, higher concentrations of oleate still caused translocation and activation of the phosphohydrolase. This enzyme is stimulated by Mg2+, and is probably involved in glycerolipid synthesis. Okadaic acid also decreased the concentration of diacylglycerol within the hepatocytes. Okadaic acid had no observable effect on the activity of an N-ethylmaleimide-insensitive phosphatidate phosphohydrolase which remained firmly attached to membranes. This activity is not stimulated by Mg2+ and is probably involved in signal transduction by the phospholipase D pathway

    Effect of Primary Power Source on the Load Voltage Relationship in Load Cells from an Instrumented Scrum Machine

    Get PDF
    To measure force generated by rugby union players during the scrum, we instrumented a scrum machine using S-type load cells for voltage force data collection. Data collection may take place in a variety of settings with varying access to primary power. The voltage outputs from electronic equipment may change when using battery versus AC power. Purpose: To compare the load-voltage relationship in S-type load cells between wall outlet AC power and a lithium ion battery pack and inverter. Methods: Dead weight calibrations of two load cells under two power supply conditions were performed up to 200kg. Voltage data was obtained using 1) outlet power from the lab, and 2) using a lithium ion battery pack and inverter (Yeti 1500x Goal Zero, South Bluffdale, UT). A linear model was created to estimate the influence of power source (battery vs wall plug) on the load-voltage relationship (i.e. voltage = β0 + β1•load + β2•load.cell(7) + β3•power.source(plug) + β4•time + β5•load • power.source(plug)). Results: The linear model indicated a main effect of the power source was present (p = 0.003) but not a load x power source interaction effect (p = 0.085). On average, voltage values from the load cell were about 0.001 volts greater than when using the battery. Conclusion: The lithium ion battery pack reliably produces voltage outputs greater than wall AC outlet power. Thus field data collection using the lithium ion battery pack is permitted, providing the volt difference is accounted for when analyzing data

    Comparative Analysis of Mutant Huntingtin Binding Partners in Yeast Species.

    Get PDF
    Huntington\u27s disease is caused by the pathological expansion of a polyglutamine (polyQ) stretch in Huntingtin (Htt), but the molecular mechanisms by which polyQ expansion in Htt causes toxicity in selective neuronal populations remain poorly understood. Interestingly, heterologous expression of expanded polyQ Htt is toxic in Saccharomyces cerevisiae cells, but has no effect in Schizosaccharomyces pombe, a related yeast species possessing very few endogenous polyQ or Q/N-rich proteins. Here, we used a comprehensive and unbiased mass spectrometric approach to identify proteins that bind Htt in a length-dependent manner in both species. Analysis of the expanded polyQ-associated proteins reveals marked enrichment of proteins that are localized to and play functional roles in nucleoli and mitochondria in S. cerevisiae, but not in S. pombe. Moreover, expanded polyQ Htt appears to interact preferentially with endogenous polyQ and Q/N-rich proteins, which are rare in S. pombe, as well as proteins containing coiled-coil motifs in S. cerevisiae. Taken together, these results suggest that polyQ expansion of Htt may cause cellular toxicity in S. cerevisiae by sequestering endogenous polyQ and Q/N-rich proteins, particularly within nucleoli and mitochondria

    In-vehicle nitrogen dioxide concentrations in road tunnels

    Get PDF
    There is a lack of knowledge regarding in-vehicle concentrations of nitrogen dioxide (NO) during transit through road tunnels in urban environments. Furthermore, previous studies have tended to involve a single vehicle and the range of in-vehicle NO concentrations that vehicle occupants may be exposed to is not well defined. This study describes simultaneous measurements of in-vehicle and outside-vehicle NO concentrations on a route through Sydney, Australia that included several major tunnels, minor tunnels and busy surface roads. Tests were conducted on nine passenger vehicles to assess how vehicle characteristics and ventilation settings affected in-vehicle NO concentrations and the in-vehicle-to-outside vehicle (I/O) concentration ratio. NO was measured directly using a cavity attenuated phase shift (CAPS) technique that gave a high temporal and spatial resolution. In the major tunnels, transit-average in-vehicle NO concentrations were lower than outside-vehicle concentrations for all vehicles with cabin air recirculation either on or off. However, markedly lower I/O ratios were obtained with recirculation on (0.08–0.36), suggesting that vehicle occupants can significantly lower their exposure to NO in tunnels by switching recirculation on. The highest mean I/O ratios for NO were measured in older vehicles (0.35–0.36), which is attributed to older vehicles having higher air exchange rates. The results from this study can be used to inform the design and operation of future road tunnels and modelling of personal exposure to NO

    Computer-Based Executive Function Training for Combat Veterans With PTSD: A Pilot Clinical Trial Assessing Feasibility and Predictors of Dropout

    Get PDF
    Background: While evidence-based PTSD treatments are often efficacious, 20–50% of individuals continue to experience significant symptoms following treatment. Further, these treatments do not directly target associated neuropsychological deficits. Here, we describe the methods and feasibility for computer-based executive function training (EFT), a potential alternative or adjunctive PTSD treatment.Methods: Male combat veterans with full or partial PTSD (n = 20) and combat-exposed controls (used for normative comparison; n = 20) completed clinical, neuropsychological and functional neuroimaging assessments. Those with PTSD were assigned to EFT (n = 13) or placebo training (word games; n = 7) at home for 6 weeks, followed by repeat assessment. Baseline predictors of treatment completion were explored using logistic regressions. Individual feedback and changes in clinical symptoms, neuropsychological function, and neural activation patterns are described.Results: Dropout rates for EFT and placebo training were 38.5 and 57.1%, respectively. Baseline clinical severity and brain activation (i.e., prefrontal-insula-amygdala networks) during an emotional anticipation task were predictive of treatment completion. Decreases in clinical symptoms were observed following treatment in both groups. EFT participants improved on training tasks but not on traditional neuropsychological assessments. All training completers indicated liking EFT, and indicated they would engage in EFT (alone or as adjunctive treatment) if offered.Conclusion: Results provide an initial framework to explore the feasibility of placebo-controlled, computerized, home-based executive function training (EFT) on psychological and neuropsychological function and brain activation in combat veterans with PTSD. Clinical severity and neural reactivity to emotional stimuli may indicate which veterans will complete home-based computerized interventions. While EFT may serve as a potential alternative or adjunctive PTSD treatment, further research is warranted to address compliance and determine whether EFT may benefit functioning above and beyond placebo interventions

    Lab-on-a-chip workshop activities for secondary school students

    Get PDF
    The ability to engage and inspire younger generations in novel areas of science is important for bringing new researchers into a burgeoning field, such as lab-on-a-chip. We recently held a lab-on-a-chip workshop for secondary school students, for which we developed a number of hands-on activities that explained various aspects of microfluidic technology, including fabrication (milling and moulding of microfluidic devices, and wax printing of microfluidic paper-based analytical devices, so-called μPADs), flow regimes (gradient formation via diffusive mixing), and applications (tissue analysis and μPADs). Questionnaires completed by the students indicated that they found the workshop both interesting and informative, with all activities proving successful, while providing feedback that could be incorporated into later iterations of the event

    Lipidomic Evaluation of Feline Neurologic Disease after AAV Gene Therapy

    Get PDF
    GM1 gangliosidosis is a fatal lysosomal disorder, for which there is no effective treatment. Adeno-associated virus (AAV) gene therapy in GM1 cats has resulted in a greater than 6-fold increase in lifespan, with many cats remaining alive at \u3e 5.7 years of age, with minimal clinical signs. Glycolipids are the principal storage product in GM1 gangliosidosis whose pathogenic mechanism is not completely understood. Targeted lipidomics analysis was performed to better define disease mechanisms and identify markers of disease progression for upcoming clinical trials in humans. 36 sphingolipids and subspecies associated with ganglioside biosynthesis were tested in the cerebrospinal fluid of untreated GM1 cats at a humane endpoint ( approximately 8 months), AAV-treated GM1 cats ( approximately 5 years old), and normal adult controls. In untreated GM1 cats, significant alterations were noted in 16 sphingolipid species, including gangliosides (GM1 and GM3), lactosylceramides, ceramides, sphingomyelins, monohexosylceramides, and sulfatides. Variable degrees of correction in many lipid metabolites reflected the efficacy of AAV gene therapy. Sphingolipid levels were highly predictive of neurologic disease progression, with 11 metabolites having a coefficient of determination (R(2)) \u3e 0.75. Also, a specific detergent additive significantly increased the recovery of certain lipid species in cerebrospinal fluid samples. This report demonstrates the methodology and utility of targeted lipidomics to examine the pathophysiology of lipid storage disorders

    Purification and characterization of sn -1-stearoyl-2-arachidonoylglycerol kinase from pig testes

    Get PDF
    1-Stearoyl-2-arachidonoylglycerol (SAG) kinase was identified in the particulate fraction of pig testes. This activity was enriched by hydroxyapatite and blue dye chromatography. The enzyme was selective for polyunsaturated diradylglycerol species and activity was not modulated by other diradylglycerol species or sphingomyelin metabolites. Further purification resulted in the isolation of 55 and 50 kDa proteins that corresponded with SAG kinase activity. These results support the view that the phosphorylation of polyunsaturated diradylglycerol is regulated by structural determinants in the molecule
    corecore