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Original Article

Lipidomic Evaluation of Feline Neurologic
Disease after AAV Gene Therapy
Heather L. Gray-Edwards,1 Xuntian Jiang,2 Ashley N. Randle,1 Amanda R. Taylor,3 Taylor L. Voss,1

Aime K. Johnson,3 Victoria J. McCurdy,1,6 Miguel Sena-Esteves,4 Daniel S. Ory,2 and Douglas R. Martin1,5

1Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL 36849, USA; 2Diabetic Cardiovascular Disease Center, Washington

University School of Medicine, St. Louis, MO 63130, USA; 3Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL 36849,

USA; 4Department of Neurology, University of Massachusetts Medical School, Worcester, PA 01655, USA; 5Department of Anatomy, Physiology, and Pharmacology,

Auburn University, Auburn, AL 36849, USA

GM1 gangliosidosis is a fatal lysosomal disorder, for which
there is no effective treatment. Adeno-associated virus
(AAV) gene therapy in GM1 cats has resulted in a greater
than 6-fold increase in lifespan, with many cats remaining
alive at >5.7 years of age, with minimal clinical signs. Glyco-
lipids are the principal storage product in GM1 gangliosido-
sis whose pathogenic mechanism is not completely under-
stood. Targeted lipidomics analysis was performed to better
define disease mechanisms and identify markers of disease
progression for upcoming clinical trials in humans. 36 sphin-
golipids and subspecies associated with ganglioside biosyn-
thesis were tested in the cerebrospinal fluid of untreated
GM1 cats at a humane endpoint (�8 months), AAV-treated
GM1 cats (�5 years old), and normal adult controls. In
untreated GM1 cats, significant alterations were noted in
16 sphingolipid species, including gangliosides (GM1 and
GM3), lactosylceramides, ceramides, sphingomyelins, mono-
hexosylceramides, and sulfatides. Variable degrees of correc-
tion in many lipid metabolites reflected the efficacy of AAV
gene therapy. Sphingolipid levels were highly predictive of
neurologic disease progression, with 11 metabolites having
a coefficient of determination (R2) > 0.75. Also, a specific
detergent additive significantly increased the recovery of
certain lipid species in cerebrospinal fluid samples. This
report demonstrates the methodology and utility of targeted
lipidomics to examine the pathophysiology of lipid storage
disorders.

INTRODUCTION
GM1 gangliosidosis is one of�70 lysosomal storage disorders, with a
prevalence of 1:7,700 live births.1,2 Deficiency of the enzyme b-galac-
tosidase (EC 3.2.1.23) prevents degradation of GM1 ganglioside and
its subsequent accumulation (or “storage”) within the lysosome.
Lysosomal dysfunction ensues, resulting in a buildup of other mole-
cules, many of which are complex lipids targeted for lysosomal degra-
dation. Storage of these cellular materials ultimately results in fatal,
neurologic disease that exists as four clinically distinct phenotypes
based on the age at which symptoms appear: infantile, late infantile,
juvenile, and adult onset.3,4

A feline model of GM1 gangliosidosis was discovered in the 1970s and
faithfully recapitulates human late-infantile/juvenile GM1 gangliosi-
dosis.5 Since its discovery, feline GM1 gangliosidosis has been studied
extensively and is an ideal large animal model to test novel therapeu-
tics. We have developed an adeno-associated virus (AAV)-mediated
gene therapy that results in extraordinary efficacy in GM1 animals,
with greater than 6-fold extension in lifespan in the GM1 cat.6–10

Approximately half of the cats from the initial report9 are alive and
healthy at a mean age of 6.4 ± 0.5 years. Even with such strong results,
which have contributed to the planning of clinical trials, the patho-
genic mechanism of lysosomal dysfunction in GM1 gangliosidosis
remains incompletely defined, and there are few objective markers
of disease progression appropriate for monitoring patients.

Tandem mass-spectrometry-based lipidomic analysis is a powerful
technique with which to study pathways and networks of cellular
lipids and to identify biomarkers of disease in glycolipidoses like
GM1 gangliosidosis. In this study, we performed targeted lipidomics
of cerebrospinal fluid (CSF) from cats with GM1 gangliosidosis, both
untreated and�5 years after AAV gene therapy. Our evaluation strat-
egy consisted of lipids and subspecies (Figure 1) that were correlated
with neurologic disease status to determine the predictive value of
each analyte.

RESULTS
GM1 cats were treated with an intracranial injection of an AAVrh8
vector encoding feline b-galactosidase, as previously described.9

Approximately half of the cats from the original report are still
healthy and have only mild neurological disease, as discussed in the
companion manuscript (published in Molecular Therapy).10 The
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main storage product in the brain of affected animals and humans,
GM1 ganglioside isoforms (18:0 and 20:0) were markedly increased
in the CSF of GM1 cats (p < 0.01). Approximately 5 years after
gene therapy, GM1 remained at normal levels (Figure 2A). GM1
levels in CSF correlated strongly with clinical disease, with a coeffi-
cient of determination (R2) of 0.92 and 0.97 for GM1 18:0 and 20:0,
respectively (Figures 2B and 2C). Other components of the ganglio-
side biosynthetic pathway were altered as well. GM3 ganglioside
(18:0 and 20:0) was elevated in untreated GM1 cats (p < 0.01), but
remained at normal levels in AAV-treated animals (Figure 2D).
Levels of GM3 18:0 and 20:0 correlated well with neurologic disease
scores (R2 = 0.68 and 0.72, respectively; Figures 2E and 2F).

Upstream in the ganglioside biosynthetic pathway (Figure 1),
ceramide (Cer) and lactosylceramide (LC) were also altered in GM1
gangliosidosis. Cer (16:0 and 18:0) levels were increased in affected
cats but remained normal in treated cats (Figure 3A). Clinical signs
correlated with CSF concentrations of Cer 16:0 (R2 = 0.81) and Cer
18:0 (R2 = 0.72) (Figures 3B and 3C). LC (16:0 and 18:0) levels
were also increased in GM1 cats, with normalization after gene

Figure 1. Glycosphingolipid Synthesis Pathway

Highlighted areas indicate metabolite alterations identi-

fied by targeted lipidomics in the CSF of cats with GM1

gangliosidosis, and associated figures in the current

manuscript are shown.

therapy, most prominently for the 18:0 species
(Figure 3D). Correlation with clinical signs
was also strongest in the LC 18:0 species (R2 =
0.78) compared to LC 16:0 (R2 = 0.43) (Figures
3E and 3F). Although sphingomyelin (SM) is
not in the same biosynthetic pathway as GM1
ganglioside, both molecules are assembled
from a ceramide backbone. Five SM species
(16:0, 18:0, 18:1, 20:0, and 22:0) were increased
in the CSF of affected cats (Figures 4A, 4D, and
4G). SM alterations were reduced at variable
levels in GM1 cats after AAV gene therapy (Fig-
ures 4A, 4D, and 4G). Correlation with the clin-
ical rating score was strong (R2 > 0.80) in SM
16:0, 18:0, 18:1, and 20:0 species (Figures 4B,
4C, 4E, and 4F).

Other lipids derived from ceramide were
elevated in GM1 gangliosidosis. Sulfatides
(STs) 18:0, 20:0, and 24:1 were elevated in
GM1 cats, were completely or partially normal-
ized after gene therapy, and correlated with
clinical disease (R2 = 0.89, R2 = 0.64, and
R2 = 0.51, respectively) (Figure 5). Monohexo-
sylceramide (MC) 16:0 and 18:0 were statisti-
cally increased in the CSF of GM1 cats, and
levels of both MC 16:0 and MC 18:0 were

partially normalized after gene therapy, which strongly correlated
with clinical disease (R2 = 0.86 and R2 = 0.75, respectively).

Other ceramide derivatives were measured in CSF, including sphin-
gosine and sphinosine-1 phosphate (S1P), which were previously
reported to be elevated in the CNS of mice with Sandhoff disease, a
form of GM2 gangliosidosis.11 Although sphingosine levels were
2-fold higher than normal in the CSF of affected cats and approached
statistical significance (p = 0.09), S1P did not differ from normal (data
not shown). Other lipids that were unchanged in treated and
untreated GM1 cats included sphinganine, SM (24:0 and 26:0) and
long chain MC species (20:0, 22:0, 24:0, and 24:1; data not shown).

The lack of significant amounts of proteins in CSF can result in the
loss of lipophilic and highly protein-bound molecules through strong
interactions with polypropylene container surfaces, such as hydrogen
bonding, hydrophobic attractions, and ionic interactions. Detergents
such as zwitterionic 3-[(3-cholamidopropyl) dimethylammonio]-1-
propanesulfonate (CHAPS)12 and Tween 8013 have been used as
anti-adsorption agents for CSF sample analysis. Due to the
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hydrophobic nature of lipid metabolites and their electrostatic inter-
actions with many plastics, CSF for this study was collected into tubes
pre-coated with CHAPS (see Materials and Methods for more infor-
mation). Because the addition of the detergent to CSF collection tubes
is not routine and banked, non-detergent-containing CSF samples
from GM1 cats and humans are extensive, we performed a direct
comparison of CSF samples in the presence or absence of detergent.
Significant loss of sphingosine, GM3 22:0, SM 22:0, and SM 24:0 was
noted without detergent (Figure 6). Also, losses of SM 18:1 and
SM 20:0 from CSF without detergent trended toward significance
(p = 0.056 and 0.054, respectively). GM1 ganglioside (18:0 or 20:0)
concentration was not significantly reduced in the absence of the
detergent additive.

DISCUSSION
Currently, there is no effective treatment for GM1 gangliosidosis. As
a rare disorder, GM1 gangliosidosis has a small number of patients

Figure 2. Lipidomic Alterations in the Ganglioside

Biosynthetic Pathway

(A and D) Peak area (total counts) of gangliosides

GM1 (A) and GM3 (D) in normal cats, untreated GM1

cats, and GM1 cats �5 years after gene therapy

(GM1+AAV). All samples were run in the same batch. *p <

0.05 from normal; **p < 0.01 from normal; ƚp < 0.05

from untreated GM1; Ŧp < 0.01 from untreated GM1.

(B, C, E, F) Correlation of ganglioside levels in CSF

with clinical rating score (CRS) of normal, GM1, and

GM1+AAV cats. The precise ganglioside species is noted

below each scatterplot, and R2 is shown on the scatter-

plots. Normal cats, n = 4; GM1, n = 4; GM1+AAV, n = 2.

Error bars represent SD.

available for clinical trial recruitment, and cli-
nicians must rely on predictive outcome mea-
sures to determine therapeutic efficacy. Also,
although b-galactosidase deficiency is the
proximate cause of disease, further elucidation
of the precise pathogenic mechanism is
needed. For these reasons, we evaluated MRI,
CSF, blood, and electrodiagnostic biomarkers
in cats and humans with GM1 gangliosidosis
(please refer to the companion manuscript
published in Molecular Therapy10). For a
more thorough analysis of the precise lipid
abnormalities in GM1 gangliosidosis, here we
performed targeted lipidomic analysis of CSF
from untreated and AAV-treated GM1 cats.
We used LC-tandem mass spectrometry (LC-
MS/MS)-based lipidomic profiling to identify
sphingolipid metabolites altered in feline
GM1 gangliosidosis that respond to AAV
gene therapy and reflected the clinical status
of the animal. Because many of the lipid alter-
ations in GM1 gangliosidosis correlate strongly

with neurologic disease, they may be useful objective measures to
assess disease status in clinical trials.

GM1 gangliosidosis is named for its primary storage product, GM1
ganglioside, which was virtually cleared from the brain of affected
mice and cats after AAV gene therapy.8,9 Because many treated cats
are still alive and healthy at >5 years post-treatment, we decided to
analyze CSF for GM1 ganglioside levels as both an indicator of neuro-
logic disease in the cats and a clinically useful metric for human
patients. GM1 levels in CSF strongly correlated with clinical disease
and, in AAV-treated GM1 cats, were completely normal (i.e., �3% of
the level in untreated cats for both the 18:0 and 20:0 species; Figure 2).
Of the 36 lipid species analyzed in this study, GM1 ganglioside was the
most reliable and robust indicator of disease progression, as expected.

Gangliosides are amphiphilic, with a ceramide core and a polysaccha-
ride side chain with or without sialic acid. The earliest and least
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complex ganglioside, GM3 is present in the CNS but is more abun-
dant in the periphery. It functions in cell proliferation, differentiation,
embryogenesis, apoptosis, oncogenesis, and insulin resistance.14,15

Secondary increases of GM3 have been reported in several lysosomal
storage disorders, including the mucopolysaccharidoses,16 Niemann-
Pick disease type C,17 Gaucher disease,18,19 and GM2 gangliosidosis,20

where its accumulation is thought to result from generalized lyso-
somal dysfunction rather than a primary enzyme deficiency. As in
other lysosomal disorders, GM3 was elevated significantly in cats
with GM1 gangliosidosis, at least in CSF (Figure 2). Its return to
normal levels after gene therapy probably represents restored func-
tion of the lysosomal trafficking and/or degradative system.

Demyelination is a prominent feature of gangliosidosis and is thought
to correlate with MRI signal intensity changes of white matter as neu-
rodegeneration progresses. Several of the lipid species analyzed herein
are components of myelin, including SM, sulfatides, and cerebrosides
(LC and MC). Sulfatides and cerebrosides were elevated in the CSF of

Figure 3. Cer and LC Alterations in GM1

Gangliosidosis Cats

(A and D) Peak area (total counts) of Cer 16:0 and 18:0 (A)

and LC 16:0 and 18:0 (D). All samples were run in the

same batch. *p < 0.05 from normal; **p < 0.01 from

normal; ƚp < 0.05 from GM1; Ŧp < 0.01 from GM1. (B, C,

E, and F) Correlation of CRS of normal, GM1, and

GM1+AAV cats with metabolite levels for Cer (B and C)

and LC (E and F) species. R2 values are denoted on the

graphs. Normal cats, n = 4; GM1, n = 4; GM1+AAV, n = 2.

Error bars represent SD.

cats with GM1 gangliosidosis (Figures 3 and 5),
inversely correlating with reduced levels in the
brains of GM1 mice, as previously reported.6,8

Although the results are potentially contradic-
tory, we hypothesize a mechanism for cellular
release of complex lipids from the brain into
CSF during myelin loss. Similarly, SM eleva-
tions in the CSF of GM1 cats may also be
explained by shedding into CSF as myelin dete-
riorates. With gene therapy, CSF from GM1
cats showed a strong pattern of normalization
for SM, ST, and cerebrosides. These data sup-
port MRI and magnetic resonance (MR) spec-
troscopy results, which show that AAV gene
therapy preserves or restores myelination in
the GM1 cat.9,10

The use of CSF sphingolipids to evaluate disease
progression in lysosomal storage diseases was
first proposed in 1992.21 Since then, MS-based
metabolomic markers have been developed
for animal models of Krabbe disease,22,23 multi-
ple sclerosis,24,25 Alzheimer disease,26,27 hydro-
cephalus,28 Parkinson disease,29 amyotrophic

lateral sclerosis,30 and glioma.31 MS-based lipidomics in Niemann-
Pick disease previously showed high sensitivity and specificity in de-
tecting treatment responses in the plasma and brain.32 Future studies
will determine if the invasiveness of CSF collection is required
to accurately track therapeutic efficacy in GM1 gangliosidosis or
whether peripheral blood samples will suffice.

In conclusion, targeted lipidomic profiling has identified several lipid
molecules and subspecies that correlate strongly with disease status
and reflect efficacy of gene therapy in feline GM1 gangliosidosis.
The array of markers identified herein may facilitate a more thorough
understanding of disease mechanism and provide objective outcome
measures for future clinical trials.

MATERIALS AND METHODS
CSF Collection

All animal procedures were approved by the Institutional Animal Care
and Use Committee at Auburn University. GM1 cats were treated by
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bilateral injections of the thalamus and deep cerebellar nuclei using an
AAVrh8 vector encoding feline b-galactosidase, as previously
described.9 Cats were treated at 1.3 to 3 months of age, prior to symp-
tom onset. Clinical rating scores were determined based on clinical
signs with a normal score of ten and subtraction of one point for
each symptom acquired: slight tremors, overt tremors, paraparesis,
wide-based stance, ataxia, occasional falling, limited ambulation, spas-
tic thoracic limbs, spastic pelvic limbs, and inability to ambulate.

For CSF collection, normal (n = 4), GM1 (n = 4), and AAV-treated
GM1 cats (n = 2) were anesthetized using a combination of dexmede-
tomidine and ketamine, intubated, and maintained at an appropriate
anesthetic plane using isoflurane. The skin was clipped and aseptically
prepared above the cisterna magna, from which CSF was collected
with a spinal needle. CSF was allowed to drop into empty polypro-
pylene tubes and polypropylene tubes pre-coated with CHAPS at a
ratio of 20 mL of 0.5 g/mL w/v CHAPS per 500 mL of CSF. CSF sam-
ples were stored at �80�C until analysis.

LC-MS/MS Lipidomics

LC-MS/MS analysis was conducted on a Shimadzu Prominence
UFLC system coupled with an Applied Biosystems/MDS Sciex

4000QTRAP mass spectrometer using multiple reaction monitoring
(MRM) and two Valco switching valves. The CSF samples were
injected directly to the LC-MS/MS system. A quality control sample
was prepared by pooling 20 mL from each study sample, and injected
every three study samples to monitor the instrument performance.
The relative quantification data were measured as peak areas of ana-
lytes and reported as total counts. All the samples were analyzed in
one batch so that relative comparisons could be made accurately
without run-to-run variation. The coefficient of variation of each lipid
in the quality control sample was less than 15%, indicating that the
mass spectrometric response was reproducible within the batch.

LC-MS/MS Analysis of Cer, MC, LC, and SM

Separation of Cer, MC, LC, and SM was carried out at 50�C using a
Waters XBridge C18 analytical column (3 � 100 mm, 3 mm) con-
nected to a Phenomenex SecurityGuard C18 guard column
(4� 3 mm) at a flow rate of 0.4 mL/min. The mobile phase consisted
of 20 mM ammonium acetate in water (solvent A) and tetrahydro-
furan-methanol (6:94) (solvent B). The step gradient was as follows:
0–5 min, 95%–100% solvent B; 5–8.5 min, 100% solvent B;
8.5–8.6 min, 100%–95% solvent B; and 8.6–13 min, 95% solvent B.
The effluent was directed into the mass spectrometer for data

Figure 4. SM in CSF of Cats

(A, D, and G) SM species levels increase in untreated GM1 cats. After gene therapy, SM species returned to normal. All samples were run in the same batch. *p < 0.05 from

normal; **p < 0.01 from normal; ƚp < 0.05 fromGM1; Ŧp < 0.01 fromGM1. (B, C, E, F, H, and I) Correlation of SM levels with the CRS of normal, GM1, and GM1+AAV cats. R2

values are denoted on the graphs. Normal cats, n = 4; GM1, n = 4; GM1+AAV, n = 2. Error bars represent SD.
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acquisition within the 6-min time window (3–9 min); elsewhere,
effluent was sent to waste to minimize source contamination. The col-
umn was back flushed with isopropanol at 1 mL/min from 8.5 to
10.5 min. The injection volume was 10 mL, and the total run time
was 13 min. The electrospray ionization (ESI) source temperature
was 550�C; the ESI needle was 5,000 V. The collision and curtain
gas were set at medium and 20, respectively. Both desolvation gas
and nebulizing gas were set at 35 L/min. The MRM transitions for
Cer(16:0), Cer(18:0), MC(16:0), MC(18:0), MC(20:0), MC(22:0),
MC(24:0), MC(24:1), LC(16:0), LC(18:0), SM(16:0), SM(18:0),
SM(18:1), SM(20:0), SM(22:0), SM(24:0), and SM(24:1) were from
538.5 to 264.3, 566.5 to 264.3, 700.5 to 264.3, 728.5 to 264.3, 756.5
to 264.3, 784.5 to 264.3, 812.5 to 264.3, 810.5 to 264.3, 862.7 to
264.3, 890.7 to 264.3, 703.5 to 184, 731.5 to 184, 729.5 to 184, 759.5
to 184, 787.5 to 184, 815.7 to 184, and 813.7 to 184, respectively.
The declustering potential (DP), entrance potential (EP), collision en-
ergy (CE), and collision cell exit potential (CXP) for Cer were 70 V,

10 V, 35 V, and 6 V, respectively. The DP, EP, CE, and CXP for
MC were 75 V, 10 V, 50 V, and 6 V, respectively. The DP, EP, CE,
and CXP for LC were 80 V, 10 V, 61 V, and 10 V, respectively. The
DP, EP, CE, and CXP for SMwere 100V, 10 V, 40 V, and 10V, respec-
tively. The dwell time was set at 20 ms for each MRM transition. Data
were acquired and analyzed by Analyst software (version 1.5.2).

LC-MS/MS Analysis of GM1, GM3, and ST

Separation of GM1, GM3, and ST was carried out at room tempera-
ture using an Advanced Chromatography Technologies ACE Super
C18 analytical column (3 � 100 mm, 3 mm) connected to a Phenom-
enex SecurityGuard Gemini C18 guard column (4 � 3 mm) at a flow
rate of 1 mL/min. The mobile phase consisted of 2.9 mM diethyl-
amine and 20 mM hexafluoro-2-propanol in water (solvent A) and
methanol-tetrahydrofuran (97:3) (solvent B). The step gradient
was as follows: 0–4 min, 90%–100% solvent B; 4–5 min, 100%
solvent B; 5–5.1 min, 100%–90% solvent B; and 5.1–8.5 min, 90%

Figure 5. ST and MC in CSF of GM1 Cats

(A and F) Peak areas (total counts) of ST (A) and MC (F) in CSF. All samples were run in the same batch. *p < 0.05 from normal; **p < 0.01 from normal; ƚp < 0.05 from GM1;
Ŧp < 0.01 from GM1. (B–E, G, and H) Correlation of ST (B–E) and MC (G and H) with clinical disease in normal, GM1, and GM1+AAV cats. R2 values are denoted on the

graphs. Normal cats, n = 4; GM1, n = 4; GM1+AAV, n = 2. Error bars represent SD.
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solvent B. The effluent was directed into the mass spectrometer for
data acquisition within the 3.5-min time window (1.5–5 min); else-
where, effluent was sent to waste to minimize source contamination.
The column was back flushed with isopropanol at 1 mL/min from 4.5
to 6 min. The injection volume was 10 mL, and the total run time was
8.5 min. The ESI source temperature was 500�C; the ESI needle was
�4,500 V. The collision and curtain gas were set at medium and
20, respectively. The desolvation gas and nebulizing gas were set
at 35 and 55 L/min, respectively. The MRM transitions for
GM1(18:0), GM1(20:0), GM3(18:0), GM3(20:0), ST(18:0), ST(20:0),
ST(22:0), ST(24:1), and ST(24:0) were from 1,544.9 to 290.2,
1,572.9 to 290.2, 1,179.9 to 290.2, 1,207.9 to 290.2, 806.6 to 97,
834.6 to 97, 862.6 to 97, 888.6 to 97, and 890.6 to 97, respectively.
The DP, EP, CE, and CXP for GM1 were �210 V, �10 V, �97 V,
and �4 V, respectively. The DP, EP, CE, and CXP for GM3 were
�220 V, �10 V, �68 V, and �4 V, respectively. The DP, EP, CE,
and CXP for ST were �200 V, �10 V, �129 V, and �6 V, respec-
tively. The dwell time was set at 20 ms for each of MRM transition.
Data were acquired and analyzed by Analyst software (version 1.5.2).

LC-MS/MS Analysis of Sphingosine and Sphinganine

Separation of sphingosine and sphinganine was carried out at
room temperature using a Waters XBridge C8 analytical column
(3 � 50 mm, 3.5 mm) connected to a Phenomenex SecurityGuard
C18 guard column (4� 3 mm) at a flow rate of 0.6 mL/min. The mo-
bile phase consisted of 0.1% formic acid in water (solvent A) and 0.1%
formic acid in methanol-acetonitrile (4:1) (solvent B). The step
gradient was as follows: 0–3 min, 70%–100% solvent B; 3–3.5 min,
100% solvent B; 3.5–3.6 min, 100%–70% solvent B; and 3.6–8 min,
70% solvent B. The effluent was directed into the mass spectrometer
for data acquisition within the 3.5-min time window (1.5–3.5 min);
elsewhere, effluent was sent to waste to minimize source contamina-
tion. The column was back flushed with isopropanol at 0.6 mL/min
from 3.5 to 6.5 min. The injection volume was 10 mL, and the total
run time was 8 min. The ESI source temperature was 550�C; the
ESI needle was 5,000 V. The collision and curtain gas were set at
medium and 20, respectively. Both desolvation gas and nebulizing
gas were set at 35 L/min. The dwell time was set at 20 ms for each
MRM transition. The MRM transitions for sphingosine and sphinga-
nine were from 300.4 to 252.3 and 302.4 to 254.3, respectively. The

DP, EP, CE, and CXP for sphingosine were 50 V, 10 V, 24 V, and
6 V, respectively. The DP, EP, CE, and CXP for sphinganine were
80 V, 10 V, 30 V, and 10 V, respectively. Data were acquired and
analyzed by Analyst software (version 1.5.2).

Statistics

Statistical analyses were performed using a two-tailed, paired
Student’s t test, assuming unequal variances. p values of < 0.05
and < 0.01 are compared to normal (* and **, respectively) and un-
treated GM1 cats (ƚ and Ŧ, respectively). Error bars represent SD.

Study Approval

All animal studies were performed in accordance with the Auburn
University Institutional Animal Care and Use Committee.
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Figure 6. Comparison of Metabolite Levels in CSF Collected with or without Detergent Additive

Samples were collected from untreated GM1 cats and subdivided into two tubes: one with detergent and one without. (A–C) Levels of GM3 (22:0) (A) SM (22:0) (B), SM (24:0)

(B), and sphingosine (C) were reduced in the absence of detergent. SM 18:1 and 20:0 reductions did not reach statistical significance (p = 0.056 and 0.054, respectively).

*p < 0.05 from CSF with additive. Error bars represent SD.
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