99 research outputs found

    Mechanistic insights into the regulation of inflammatory pathology by A20

    Get PDF

    Determination of Sapphire Off‐Cut and Its Influence on the Morphology and Local Defect Distribution in Epitaxially Laterally Overgrown AlN for Optically Pumped UVC Lasers

    Get PDF
    Herein, a systematic study of the morphology and local defect distribution in epitaxially laterally overgrown (ELO) AlN on c‐plane sapphire substrates with different off‐cut angles ranging from 0.08° to 0.23° is presented. Precise measurements of the off‐cut angle α, using a combination of optical alignment and X‐ray diffraction with an accuracy of ±5° for the off‐cut direction and ±0.015° for the off‐cut angle, are carried out. For ELO AlN growth, a transition from step flow growth at α  0.14° is observed. Furthermore, the terraces of the step‐bunched surface exhibit curved steps. An analysis of the local defect distribution by scanning transmission electron microscopy and a comparison with atomic force microscopy reveal a bunching of defects in line with the ELO pattern and a roughening of step edges in highly defective regions. In addition, a reduction in the threshold excitation power density for optically pumped ultraviolet‐C (UVC) lasers with smooth surface morphologies is observed.TU Berlin, Open-Access-Mittel - 201

    Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR) is an efficient tool for metamodelling of nonlinear dynamic models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs) to variation in features of the trajectories of the state variables (outputs) throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR), where fuzzy <it>C</it>-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR) and ordinary least squares (OLS) regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function.</p> <p>Results</p> <p>Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback loops.</p> <p>Conclusions</p> <p>HC-PLSR is a promising approach for metamodelling in systems biology, especially for highly nonlinear or non-monotone parameter to phenotype maps. The algorithm can be flexibly adjusted to suit the complexity of the dynamic model behaviour, inviting automation in the metamodelling of complex systems.</p

    The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF

    Get PDF
    The ubiquitin-editing enzyme A20 is a well-known regulator of immune cell function and homeostasis. In addition, A20 protects cells from death in an ill-defined manner. While most studies focus on its role in the TNF-receptor complex, we here identify a novel component in the A20-mediated decision between life and death. Loss of A20 in NK cells led to spontaneous NK cell death and severe NK cell lymphopenia. The few remaining NK cells showed an immature, hyperactivated phenotype, hallmarked by the basal release of cytokines and cytotoxic molecules. NK-A20(-/-) cells were hypersensitive to TNF-induced cell death and could be rescued, at least partially, by a combined deficiency with TNF. Unexpectedly, rapamycin, a well-established inhibitor of mTOR, also strongly protected NK-A20(-/-) cells from death, and further studies revealed that A20 restricts mTOR activation in NK cells. This study therefore maps A20 as a crucial regulator of mTOR signaling and underscores the need for a tightly balanced mTOR pathway in NK cell homeostasis

    A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms

    Get PDF
    The cytokine TNF promotes inflammation either directly by activating the MAPK and NF-kappa B signaling pathways, or indirectly by triggering cell death. A20 is a potent anti-inflammatory molecule, and mutations in the gene encoding A20 are associated with a wide panel of inflammatory pathologies, both in human and in the mouse. Binding of TNF to TNFR1 triggers the NF-kappa B-dependent expression of A20 as part of a negative feedback mechanism preventing sustained NF-kappa B activation. Apart from acting as an NF-kappa B inhibitor, A20 is also well-known for its ability to counteract the cytotoxic potential of TNF. However, the mechanism by which A20 mediates this function and the exact cell death modality that it represses have remained incompletely understood. In the present study, we provide in vitro and in vivo evidences that deletion of A20 induces RIPK1 kinase-dependent and -independent apoptosis upon single TNF stimulation. We show that constitutively expressed A20 is recruited to TNFR1 signaling complex (Complex I) via its seventh zinc finger (ZF7) domain, in a cIAP1/2-dependent manner, within minutes after TNF sensing. We demonstrate that Complex I-recruited A20 protects cells from apoptosis by stabilizing the linear (M1) ubiquitin network associated to Complex I, a process independent of its E3 ubiquitin ligase and deubiquitylase (DUB) activities and which is counteracted by the DUB CYLD, both in vitro and in vivo. In absence of linear ubiquitylation, A20 is still recruited to Complex I via its ZF4 and ZF7 domains, but this time protects the cells from death by deploying its DUB activity. Together, our results therefore demonstrate two distinct molecular mechanisms by which constitutively expressed A20 protect cells from TNF-induced apoptosis

    A20 deficiency in myeloid cells protects mice from diet-induced obesity and insulin resistance due to increased fatty acid metabolism

    Get PDF
    Obesity-induced inflammation is a major driving force in the development of insulin resistance, type 2 diabetes (T2D), and related metabolic disorders. During obesity, macrophages accumulate in the visceral adipose tissue, creating a low-grade inflammatory environment. Nuclear factor kappa B (NF-kappa B) signaling is a central coordinator of inflammatory responses and is tightly regulated by the anti-inflammatory protein A20. Here, we find that myeloid-specific A20-deficient mice are protected from diet-induced obesity and insulin resistance despite an inflammatory environment in their metabolic tissues. Macrophages lacking A20 show impaired mitochondrial respiratory function and metabolize more palmitate both in vitro and in vivo. We hypothesize that A20-deficient macrophages rely more on palmitate oxidation and metabolize the fat present in the diet, resulting in a lean phenotype and protection from metabolic disease. These findings reveal a role for A20 in regulating macrophage immunometabolism

    Physical and functional interaction between A20 and ATG16L1-WD40 domain in the control of intestinal homeostasis

    Get PDF
    Prevention of inflammatory bowel disease (IBD) relies on tight control of inflammatory, cell death and autophagic mechanisms, but how these pathways are integrated at the molecular level is still unclear. Here we show that the anti-inflammatory protein A20 and the critical autophagic mediator Atg16l1 physically interact and synergize to regulate the stability of the intestinal epithelial barrier. A proteomic screen using the WD40 domain of ATG16L1 (WDD) identified A20 as a WDD-interacting protein. Loss of A20 and Atg16l1 in mouse intestinal epithelium induces spontaneous IBD-like pathology, as characterized by severe inflammation and increased intestinal epithelial cell death in both small and large intestine. Mechanistically, absence of A20 promotes Atg16l1 accumulation, while elimination of Atg16l1 or expression of WDD-deficient Atg16l1 stabilizes A20. Collectively our data show that A20 and Atg16l1 cooperatively control intestinal homeostasis by acting at the intersection of inflammatory, autophagy and cell death pathways

    Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities

    Get PDF
    Protein ubiquitination regulates protein stability and modulates the composition of signaling complexes. A20 is a negative regulator of inflammatory signaling, but the molecular mechanisms involved are ill understood. Here, we generated Tnfaip3 gene-targeted A20 mutant mice bearing inactivating mutations in the zinc finger 7 (ZnF7) and ZnF4 ubiquitin-binding domains, revealing that binding to polyubiquitin is essential for A20 to suppress inflammatory disease. We demonstrate that a functional ZnF7 domain was required for recruiting A20 to the tumor necrosis factor receptor 1 (TNFR1) signaling complex and to suppress inflammatory signaling and cell death. The combined inactivation of ZnF4 and ZnF7 phenocopied the postnatal lethality and severe multiorgan inflammation of A20-deficient mice. Conditional tissue-specific expression of mutant A20 further revealed the key role of ubiquitin-binding in myeloid and intestinal epithelial cells. Collectively, these results demonstrate that the anti-inflammatory and cytoprotective functions of A20 are largely dependent on its ubiquitin-binding properties. van Loo and colleagues provide insights into the action of the anti-inflammatory protein A20. The ZnF7 and ZnF4 ubiquitin-binding domains of A20 are both required to suppress inflammatory signaling and cell death; however, these zinc fingers operate via distinct mechanisms

    ID3.8 Release 2.0 of the TENCompetence integrative software

    Get PDF
    The document explains the installation and configuration steps to set up instances of the PCM client and the PCM server.The work on this publication has been sponsored by the TENCompetence Integrated Project that is funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org

    A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation

    Get PDF
    Microglia, the mononuclear phagocytes of the central nervous system (CNS), are important for the maintenance of CNS homeostasis, but also critically contribute to CNS pathology. Here we demonstrate that the nuclear factor kappa B (NF-kappa B) regulatory protein A20 is crucial in regulating microglia activation during CNS homeostasis and pathology. In mice, deletion of A20 in microglia increases microglial cell number and affects microglial regulation of neuronal synaptic function. Administration of a sublethal dose of lipopolysaccharide induces massive microglia activation, neuroinflammation, and lethality in mice with microgliaconfined A20 deficiency. Microglia A20 deficiency also exacerbates multiple sclerosis (MS) like disease, due to hyperactivation of the NIrp3 inflammasome leading to enhanced interleukin-113 secretion and CNS inflammation. Finally, we confirm a NIrp3 inflammasome signature and IL-1 beta expression in brain and cerebrospinal fluid from MS patients. Collectively, these data reveal a critical role for A20 in the control of microglia activation and neuroinflammation
    corecore