ORIGINAL PAPER

physica
status
solidi
[+))

Www.pss-a.com

Determination of Sapphire Off-Cut and Its Influence on
the Morphology and Local Defect Distribution in
Epitaxially Laterally Overgrown AIN for Optically Pumped

UVC Lasers

Johannes Enslin,* Arne Knauer, Anna Mogilatenko, Frank Mehnke, Martin Martens,
Christian Kuhn, Tim Wernicke, Markus Weyers, and Michael Kneissl

Herein, a systematic study of the morphology and local defect distribution in
epitaxially laterally overgrown (ELO) AIN on c-plane sapphire substrates with
different off-cut angles ranging from 0.08° to 0.23° is presented. Precise meas-
urements of the off-cut angle «, using a combination of optical alignment and X-ray
diffraction with an accuracy of +-5° for the off-cut direction and +0.015° for the off-
cut angle, are carried out. For ELO AIN growth, a transition from step flow growth
at @ < 0.14° with height undulations on the surface to step bunching with step
heights up to 20 nm for or> 0.14° is observed. Furthermore, the terraces of the
step-bunched surface exhibit curved steps. An analysis of the local defect distri-
bution by scanning transmission electron microscopy and a comparison with
atomic force microscopy reveal a bunching of defects in line with the ELO pattern
and a roughening of step edges in highly defective regions. In addition, a reduction
in the threshold excitation power density for optically pumped ultraviolet-C (UVC)

lasers with smooth surface morphologies is observed.

1. Introduction

Light-emitting diodes (LEDs) and laser diodes (LDs) emitting in
the ultraviolet-C spectral region between 200 and 280 nm have a
wide range of applications such as water purification,! disinfec-
tion of surfaces, gas sensing,>® and medical diagnostics.*
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These devices require high-quality layers
in terms of dislocation density as well as
smooth surface morphologies to reach high
efficiencies, high output power levels, and,
in the case of LDs, low-threshold power
densities. The relatively high threading
dislocation densities (IDDs) of the AIN
template layers used for AlGaN growth!
limit the internal quantum efficiency of
optical devices.®! Epitaxially laterally over-
grown (ELO) AlN/sapphirel”) is one
method for the effective TDD reduction
on c-plane sapphire substrates. This ELO
process allows a TDD reduction down to
5 x 10® cm™ 2B

In this article, we present the systematic
variation of the off-cut angle of (0001)-
oriented sapphire substrates and its impact
on the surface morphology and the local
defect distribution of ELO AIN/sapphire
templates. In a previous study, we compared ELO AIN/sapphire
templates on sapphire wafers with nominal off-cut angles of
0.1° £ 0.1° and 0.2° £ 0.1°. Off-cut angles of 0.2° + 0.1° resulted
in the formation of macrosteps with heights of several nano-
meters.'”) Here, the off-cut angle was determined by precise
X-ray diffraction (XRD) measurements combined with an optical
alignment. Subsequently, the wafers were processed and over-
grown to obtain ELO AIN/sapphire templates. Their surface mor-
phology as well as their defect distribution was investigated by
atomic force microscopy (AFM) and scanning transmission
electron microscopy (STEM), respectively. Furthermore, laser het-
erostructures were grown with an emission wavelength of 270-
275 nm on these templates to investigate the influence of the tem-
plate morphology on the performance of optically pumped devices.

2. Determination of Sapphire Off-Cut

Since the transition from step flow growth to step bunching for
ELO AIN/sapphire occurs at very small off-cut angles between
0.1° and 0.2°,[1% 3 highly accurate determination of the substrate
off-cut is necessary to determine the critical angle for this tran-
sition. Thus, precise off-cut measurements were carried out
using a combination of an optical alignment of the wafer and
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XRD reciprocal space maps (¢/w). This technique is similar to
the one described by Halliwell and Chua!*"! extended by an
additional alignment step of the wafer. Using this alignment,
the surface normal of the sapphire wafer can be adjusted parallel
to the rotation axis of the diffractometer. Figure 1 shows the
setup for the off-cut determination.'” The wafer is mounted
onto a tiltable sample holder in a Philips X‘Pert MRD Pro
X-ray diffractometer. The X-ray beam is directed onto the sample
under the angle w. The cradle can either be rotated around its
rotation axis (@-angle) or tilted perpendicular to the plane of
the beam (y-angle).!"*! A collimated red laser beam is directed
at the center of the sample holder—corresponding to the rotation
axis position—and is reflected by the sapphire surface. Using two
mirrors, the reflected beam is guided over a distance of 15m to a
screen. Typically an inplane rotation around the rotation axis of
the diffractometer results in a precession of the laser spot on the
screen due to the tilt between the surface normal and the goni-
ometer axis. By tilting the sample holder independently from the
goniometer (w/¢/y), the precession radius was minimized,
which corresponds to an adjustment of the surface normal
parallel to the rotation axis of the diffractometer. The error for
the following measurements was estimated by correlating the
radius of the residual precession to a shift in the w-angle of
the goniometer. The error was estimated for every single
measurement and ranges from +0.007° to £0.015°.

After the alignment of the surface normal to the goniometer
rotation axis, a map in @ and ¢ of the (0006) reflection of sapphire
was acquired (Figure 2). A rotation of the wafer variation of ¢-
angle results in a variation of the peak position in w-direction, as
the lattice planes are tilted according to the off-cut angle. The
location of each peak in the w scans was extracted, and the result-
ing peak position w,,,(¢) was fitted with a sine function (solid
blue line). The amplitude of the sine curve corresponds directly
to the off-cut angle a marked in red. As shown in Figure 2 by gray
lines, a minimum of the sine function at ¢ = 0 would corre-
spond to a wafer with a pure off-cut into the m-direction of sap-
phire (considering the orientation of the wafer in relation to the
goniometer, shown in Figure 2). A shift of the minimum of the
sine function to positive or negative g-angles indicates a shift of
the direction of the off-cut toward the a-direction of sapphire
(¢ =90° for pure off-cut to the a-direction of sapphire), which
is the case for the measured off-cut in Figure 2 (black hexagons).

XRD- tilt stage

sample

holder sapphire wafer

rotation
axis

(o)

\ mirror screen

Figure 1. Experimental setup to align the surface normal of the sapphire
wafer parallel to the rotation axis (¢) of the XRD sample holder.
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The position of the flat is used to determine the off-cut direction.
The misalignment of the flat given by the manufacturer is £0.2°
in reference to the [1120] direction of sapphire, which is negligi-
ble in comparison with the estimated error due to the manual
alignment of the wafer on the goniometer, which is estimated
to be £5°. In case a higher precision is required, the measure-
ment can be extended by an asymmetric ¢-scan to correlate the
crystal axis to the sample holder; however, this was not per-
formed for the measured wafers. The off-cut angle « can be split
into the component in the sapphire m-direction (o) by calculat-
ing the difference in @ for ¢ = 0° and ¢ = +180° (see Figure 2).
Accordingly, the sapphire a-direction component (@,) can be cal-
culated by evaluating the w-angle at ¢ = —90° and ¢ = 90°. The
correlation between the off-cut a and its components a, and ay, is
given by: a = y/a? + a2,. Two batches of c-orientated sapphire
wafers with nominal off-cut angles of 0.1° + 0.1° and 0.2° £ 0.1°
toward the sapphire m-direction were examined. For wafers with
a nominal off-cut angle of 0.1° £+ 0.1°, we observed variations
from 0.08° to 0.12° and for wafers with a nominal off-cut angle
of 0.2° £0.1°, values between 0.16° and 0.23° were observed.
Although, the specifications given by the wafer supplier are
satisfied, there is a certain variety within each batch of wafers.
To cover a broad range of off-cut angles, we selected eight wafers
with off-cut angles varying from 0.08° to 0.1° & 0.23° for further
investigations (see Figure 3, open symbols).

3. ELO AIN/Sapphire Morphology and Defects

3.1. Experimental Procedure

After the determination of the off-cut angles, the sapphire wafers
were overgrown with a 0.5 pm-thick AIN layer in an Aixtron
2400-G3 planetary reactor with standard precursors.'"]
Subsequently, these templates were patterned with stripes along
the [1010] direction of AIN ([2110] direction of sapphire) and
overgrown with 5.8 pm ELO AIN, as described in the study by

Msap Asap
212 F Msap 4
Msap Asap Mgap Agyp
‘ Asap : ; ‘mSZp ?Sap
211 F - f i ¥
‘é’ H
20,
21.0F | " 20 |
L ] T S - i e Sty e
-180 -90 90 180

Figure 2. Peak positions of an w—¢—XRD map of a sapphire wafer near the
(0006) reflection indicating the off-cut angle @ and the components in
a- and m-directions (a, and ). The direction in reference to the flat
is illustrated in the upper half of the image. The stripes drawn on the wafer
schematic depict the direction of the processed ELO trenches.
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Figure 3. Off-cut angles a of two batches of sapphire wafers with nominal
off-cut angles of 0.1° +0.1° (blue) and 0.2° £ 0.1° (green). Open symbols
mark the selected wafers for further analysis.

Knauer et al."” The morphology and local defect distribution of
these ELO AlIN/sapphire templates were investigated using AFM
and STEM.

3.2. Surface Morphology of ELO AIN/Sapphire

In Figure 4, AFM images are shown, presenting the surface mor-
phology of ELO AIN grown on sapphire wafers with different off-
cut angles to the sapphire m-direction. For off-cut angles between
0.08° and 0.12°, the images show a wavelike surface morphology
with monoatomic steps and an overall undulation with a height
difference between the lowest and the highest point on the
surface ranging from 3 to 5nm. For higher off-cut angles
(0.16° —0.23°), the AIN surfaces exhibit macrosteps with increas-
ing heights from 14 nm at @ = 0.16° to 21 nm at a > 0.20°. The
periodicity of the wavelike surface features as well as the period-
icity of the macrosteps for high off-cut angles corresponds to the
periodicity of the underlying ELO pattern of 3.5 pm. In addition,
AFM images give insight into the roughness of the grown sam-
ples. The root mean square (RMS) roughness was evaluated on a
20 pm x 20 pm scale and is shown in Figure 4. Templates with
off-cut angles between 0.08° and 0.12° exhibit rather smooth
surfaces with low and constant RMS values around 1.5nm.
On the contrary, templates with off-cut angles between 0.16°
and 0.23° exhibit RMS values increasing from 3.5 to 5.3 nm with
increasing off-cut angle. The surface morphologies for this wide

Www.pss-a.com

range of off-cut angles were investigated and showed a transition
from a wavelike surface morphology to a surface with macrosteps
at a critical angle of @ = 0.14° £ 0.02° for this growth parameter
regime.'*) This can be explained by the fact that the height of the
surface steps appearing at coalescence positions of two neighbor-
ing ELO stripes increased with increasing off-cut angle. The high
steps cannot be planarized anymore with further overgrowth to
obtain a smooth surface for a > 0.14°. Thus, the surface steps are
preserved during subsequent growth, which results in step
bunching at the surface. Detailed studies would be necessary
to completely understand the transition from smooth morphol-
ogies to step bunching.

A closer look at the samples exhibiting step bunching reveals
the surface morphology of the macroterrace (area between macro-
steps). In Figure 5a, a single macrostep was selected, and the
monoatomic step edges observed on the macroterrace were
marked in green. The terrace exhibits a convex bow with the lowest
points close to the macrostep edge. Furthermore, the monoatomic
steps are curved. The normal to the curve of the step (green lines
in Figure 5a) in the middle between the macrosteps points into the
m-direction of AIN [1010] ([2110] direction of sapphire) (i.e., the
step flow takes place along the macrosteps). Figure 5b shows
step flow growth on the highest point of the convex terrace (purple
area) with large terrace widths between the steps of over 400 nm.
In contrast, Figure 5¢c shows monoatomic steps—close to the mac-
roterrace edge—running along the AIN a-direction [1210] ([1010]
direction of sapphire) (i.e., the step flow takes place across the mac-
roterrace) with terrace width between the steps of less than
100 nm. The off-cut toward the m-direction [1010] of sapphire
([1210] direction of AIN) on the terrace is quite small due to a com-
pensation through the stepped surface, and thus the fraction of the
off-cut toward the sapphire a-direction [2110] ([1010] direction of
AIN, parallel to macrosteps) dictates the step flow direction. The
convex shape of the terrace could be explained by diffusion of ada-
toms over the edge of the macrostep, leading to a reduced growth
rate close to the macrostep.

3.3. Local Defect Distribution in ELO AIN/Sapphire

By conducting high-resolution AFM measurements, it is possible
to observe surface pits which are most likely caused by threading
dislocations. Tarsa et al. found that the number and type of
surface pits observed by AFM in GaN films fit very well to the
defect density determined by transmission electron microscopy
(TEM).™ To visualize single defects, AFM images were
acquired, and a polynomial background was subtracted from
the recorded data to flatten the image. The processed AFM

0.08° 0.09° 0.10° 0.12°

0.23°
off-cut angle o

0.16° 0.20° 0.21°

Figure 4. AFM micrographs of the ELO AIN/sapphire surface for increasing sapphire off-cut angles from 0.08° to 0.12° with wavelike surface morphology
and from 0.16° to 0.23° with step bunching and corresponding RMS roughness measured on a 20 pm x 20 pm area.
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2.5nm

Figure 5. a) AFM images of one convex macrostep terrace grown on a
sapphire wafer with an off-cut angle of 0.16°, b) exhibiting wide monoa-
tomic steps (image taken from the area marked with a purple square in (a),
and c) small terrace widths between the steps (this image is taken from a
similar area of the macrostep terrace as marked in (a) in red).

images are shown in Figure 6a,b), and the local defect densities
were determined. In Figure 5a, for example, dislocations with a
screw component can be identified by two monolayer steps orig-
inating from the pits, as marked by red circles; furthermore,

Www.pss-a.com

areas close to the macrostep exhibit a high defect density of about
1x 10" cm™2% This value corresponds very well to the defect
density of planar AIN/sapphire templates.'”! Furthermore, there
is a 1.5 pm-wide region exhibiting a reduced defect density of
1 x 10° cm ™2, As shown in the cross-section annular dark-field
(ADF) STEM image (see the study by Mehnke!'"”) in
Figure 6c, the pattern of a 1.5 ym-wide defect-reduced region
above the trenches followed by a 2 pm-wide defect-rich region
is consistent with the AFM image. The mean defect density
obtained by STEM correlates well with the one extracted from
the AFM images as well as defect densities calculated from
XRD rocking curves!** of the (0002) and (3032) reflections which
are all in the range of 6 x 10° cm 2. The measurement geometry
was selected such that the incoming X-ray beam was parallel
to the direction of the ELO trenches (in AIN [1010] direction)
to avoid additional peak broadening due to wing tilt.'*
Figure 6b shows the defects on the surface for a template grown
on a sapphire wafer with an off-cut angle of 0.12°. A 2 pm-wide
area proceeding from the upper left corner of the image to the
lower right corner exhibits a high density of defects. Further-
more, the growth fronts of the monoatomic steps are rougher
in this area compared with the remaining part of the image
due to impediment of the step motion by defects. The defect den-
sities in the two areas are almost identical to those of samples
with high off-cut angles.

Figure 6. AFM images flattened by substraction of a polynomial background of an ELO AIN/sapphire surface with a) stepbunches and b) a wavelike
surface morphology illustrating defect-rich regions between the dashed lines and the macrostep edge and between the dashed lines, respectively.
Cross-section ADF STEM images showing the defect distribution in ELO AIN/sapphire with off-cut angles of ¢) a > 0.14" and d) @ < 0.14°. White arrows

indicate coalescence boundaries between two wing regions.
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A comparison with ADF STEM images (Figure 6d) reveals the
same geometrical pattern and defect distribution as the AFM
investigations. ELO AIN/sapphire samples with high off-cut
angles show an inclined grain boundary, whereas samples grown
on substrates with low off-cut angles exhibit a vertical grain
boundary originating from the coalescence region. The inclina-
tion of threading dislocations for higher off-cuts is caused by
formation of the macrostep at the coalescence position and its
lateral propagation during further growth, which is already
described in the study by Knauer et al.'” Contrary to that, sam-
ples with low off-cut angles exhibit no macrosteps boundaries,
and the correlation between the underlying ELO pattern and
the surface undulations is fixed. Therefore, the conclusion can
be drawn that the off-cut angles in the investigated ELO AIN/
sapphire templates have no significant influence on the defect
distribution but on the surface morphology at a given thickness
of 2 um after coalescence of the investigated templates. It should
be noted that a thicker ELO AIN layer (>6 pm) for templates with
high off-cut angles and inclined grain boundaries can result in a
collection and partial annihilation of dislocations.?!

4. Optically Pumped Laser Structures

4.1. Experimental Procedure

Finally, optically pumped laser structures consisting of AlGaN
multiple quantum wells emitting between 270 and 275nm
embedded in Aly;Gag;N waveguides and an AlGaN cladding
layer™! were grown on top of ELO AlN/sapphire templates.
Excitation power-dependent photoluminescence (PL) measure-
ments were carried out on laser bars with cleaved facets!*®! in
stripe geometry using a 193 nm ArF laser as the optical excitation
source.'”? Modal losses of the grown structures were determined
based on optical gain spectra obtained by the variable stripe
length method.!"”)

4.2, Off-Cut Influence on Laser Threshold

The net gain obtained from the variable stripe length method for
both structures is shown in Figure 7a. The structure exhibiting
step bunching shows internal losses, increased by a factor of five,

(a) : : . ; ;
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in comparison with the structure without step bunching. This
results in a drastically decreased net gain. The integrated PL
intensity collected from the facet as a function of the excitation
power density for both structures is shown in Figure 7b. Both
heterostructures exhibit lasing between 270 and 275 nm as the
power-dependent PL intensity shows a threshold behavior in
combination with spectral narrowing (not shown here).*”!
The laser structure on ELO AIN/sapphire with a smooth surface
morphology exhibits lasing at a threshold power density of
1.7MW cm 2. This value is increased to 2.8 MW cm 2 for
a laser structure grown on an ELO AlN/sapphire template
exhibiting step bunching. This increase in threshold power den-
sity could be attributed to optical scattering losses within the
waveguide due to 15-20 nm-high macrosteps. In addition,
a stronger Ga incorporation at the macrostep edge!® can result
in an increased modal loss due to absorption in Ga-rich regions.
Considering this, avoiding macrosteps is crucial to achieve low
laser thresholds. Therefore, the right choice of substrate off-cut
for ELO AIN/sapphire needs to be considered. On the one
hand, a sufficiently high substrate off-cut into the sapphire
m-direction for ELO AlN/sapphire needs to be chosen to
ensure coalescence and avoid nucleation of randomly distrib-
uted islands. On the other hand, the substrate off-cut chosen
needs to be small enough, as shown in this study, to avoid
macrosteps.

5. Conclusion

Using a combination of XRD and optical alignment of the
sapphire surface, we measured the off-cut angles of c-plane sap-
phire wafers with a precision down to £0.015°. After AIN growth,
processing, and overgrowth with ELO AIN, the surface morphol-
ogy changes from a wavelike surface morphology to step bunch-
ing at a critical angle of a= 0.14° £ 0.02° for the used AIN growth
conditions. Macroterraces exhibit curved monoatomic steps. An
analysis of the defect distribution on the surface by precise AFM
and STEM measurements revealed an inhomogeneous distribu-
tion of the defects caused by ELO patterning with a similar
overall defect density for both types of surface morphologies.
The threshold power density for optically pumped lasing
decreases drastically for laser structures emitting at 270 and
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Figure 7. a) Net gain spectra for evaluation of internal losses and b) normalized integrated PL intensity versus excitation power density of an AlGaN
multiple quantum well laser structure grown on an ELO AIN/sapphire template without step bunching and with step bunching.

Phys. Status Solidi A 2019, 216, 1900682 1900682 (5 of 6)

© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


http://www.advancedsciencenews.com
http://www.pss-a.com

ADVANCED
SCIENCE NEWS

physica
status
solidi
[J))

www.advancedsciencenews.com

275 nm grown on surfaces exhibiting no macrosteps. These find-
ings show that low laser thresholds of optically pumped laser
structures can be achieved for c-plane sapphire wafers with
smooth surface morphologies. For the presented ELO AIN/
sapphire templates, this could be realized for off-cut angles
a<0.14°.
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