1,922 research outputs found

    The Galactic bulge as seen in optical surveys

    Full text link
    The bulge is a region of the Galaxy of tremendous interest for understanding galaxy formation. However measuring photometry and kinematics in it raises several inherent issues, such as severe crowding and high extinction in the visible. Using the Besancon Galaxy model and a 3D extinction map, we estimate the stellar density as a function of longitude, latitude and apparent magnitude and we deduce the possibility of reaching and measuring bulge stars with Gaia. We also present an ongoing analysis of the bulge using the Canada-France-Hawaii Telescope.Comment: In SF2A-2008: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysic

    Urine Test Strips to Exclude Cerebral Spinal Fluid Blood

    Get PDF
    Introduction: Determining the presence or absence of red blood cells (RBC) or their breakdown products in cerebrospinal fluid (CSF) is essential for the evaluation of subarachnoid hemorrhage (SAH) in headache patients. Current methodology for finding blood in the CSF is either spectrophotometric detection of pigment, which is time consuming and labor intensive, or visual assesment of samples for color change (xanthochromia), which is inaccurate. Bayer MultistixÂź urine test strips are designed to test urine for RBC by detecting the presence of hemoglobin. The aim of this pilot study was to evaluate the perfomance of urine reagent test strips for ruling out the presence of RBC in CSF.Methods: We compared color changes on MultistixÂź urine test strips to the standard of spectrophotometric absorbtion at 415nm and initial RBC counts in 138 visually clear CSF samples.Results: We performed Pearson Chi-Square and likelihood ratios on the results and found a correlation between a negative result on the urine test strip and less than 5 RBC per high power field and a spectrophotometric absorbance of less than 0.02% at 415nm in a CSF sample.Conclusion: These results warrant further investigation in the form of a prospective clinical validation as it may alter the emergency department evaluation for SAH. [West J Emerg Med. 2011;12(1):63-66.

    High precision microlensing maps of the Galactic bulge

    Full text link
    We present detailed maps of the microlensing optical depth and event density over an area of 195 sq. deg towards the Galactic bulge. The maps are computed from synthetic stellar catalogues generated from the Besancon Galaxy Model, which comprises four stellar populations and a three-dimensional extinction map calibrated against the Two-Micron All-Sky Survey. The optical depth maps have a resolution of 15 arcminutes, corresponding to the angular resolution of the extinction map. We compute optical depth and event density maps for all resolved sources above I=19, for unresolved (difference image) sources magnified above this limit, and for bright standard candle sources in the bulge. We show that the resulting optical depth contours are dominated by extinction effects, exhibiting fine structure in stark contrast to previous theoretical optical depth maps. Optical depth comparisons between Galactic models and optical microlensing survey measurements cannot safely ignore extinction or assume it to be smooth. We show how the event distribution for hypothetical J and K-band microlensing surveys, using existing ground-based facilities such as VISTA, UKIRT or CFHT, would be much less affected by extinction, especially in the K band. The near infrared provides a substantial sensitivity increase over current I-band surveys and a more faithful tracer of the underlying stellar distribution, something which upcoming variability surveys such as VVV will be able to exploit. Synthetic population models offer a promising way forward to fully exploit large microlensing datasets for Galactic structure studies.Comment: 8 pages, submitted to MNRA

    The Milky Way's external disc constrained by 2MASS star counts

    Full text link
    Context. Thanks to recent large scale surveys in the near infrared such as 2MASS, the galactic plane that most suffers from extinction is revealed and its overall structure can be studied. Aims. This work aims at constraining the structure of the Milky Way external disc as seen in 2MASS data, and in particular the warp. Methods. We use the Two Micron All Sky Survey (hereafter 2MASS) along with the Stellar Population Synthesis Model of the Galaxy, developed in Besancon, to constrain the external disc parameters such as its scale length, its cutoff radius, and the slope of the warp. In order to properly interpret the observations, the simulated stars are reddened using a three dimensional extinction map. The shape of the stellar warp is then compared with previous results and with similar structures in gas and dust. Results. We find new constraints on the stellar disc, which is shown to be asymmetrical, similar to observations of HI. The positive longitude side is found to be easily modelled with a S shape warp but with a slope significantly smaller than the slope seen in the HI warp. At negative longitudes, the disc presents peculiarities which are not well reproduced by any simple model. Finally, comparing with the warp seen in the dust, it seems to follow a slope intermediate between the gas and the stars.Comment: 9 pages. Accepted for publication in Astronomy and Astrophysic

    Deep K_s-near-infrared Surface Photometry of 80 Dwarf Irregular Galaxies in the Local Volume

    Get PDF
    We present deep near-infrared (K_s) images and surface photometry for 80 dwarf irregular galaxies (dIs) within ~5 Mpc of the Milky Way. The galaxy images were obtained at five different facilities between 2004 and 2006. The image reductions and surface photometry have been performed using methods specifically designed for isolating faint galaxies from the high and varying near-infrared sky level. Fifty-four of the 80 dIs have surface brightness profiles which could be fit to a hyperbolic-secant (sech) function, while the remaining profiles could be fit to the sum of a sech and a Gaussian function. From these fits, we have measured central surface brightnesses, scale lengths, and integrated magnitudes. This survey is part of a larger study of the connection between large-scale structure and the global properties of dIs, the hypothesized building-blocks of more massive galaxies

    Scotland Registry for Ankylosing Spondylitis (SIRAS) – Protocol

    Get PDF
    Funding SIRAS was funded by unrestricted grants from Pfizer and AbbVie. The project was reviewed by both companies, during the award process, for Scientific merit, to ensure that the design did not compromise patient safety, and to assess the global regulatory implications and any impact on regulatory strategy.Publisher PD

    The Extinction and Distance of Maffei 1

    Full text link
    We have obtained low- and high-resolution spectra of the core of the highly-reddened elliptical galaxy Maffei 1. From these data, we have obtained the first measurement of the Mg2 index, and have measured the velocity dispersion and radial velocity with improved accuracy. To evaluate the extinction, a correlation between the Mg2 index and effective V-I colour has been established for elliptical galaxies. Using a new method for correcting for effective wavelength shifts, we find A_V = 4.67 +/- 0.19 mag, which is lower by 0.4 mag than previously thought. To establish the distance, the Fundamental Plane for elliptical galaxies has been constructed in I. The velocity dispersion of Maffei 1, measured to be 186.8 +/- 7.4 km/s, in combination with modern wide-field photometry in I, leads to a distance of 2.92 +/- 0.37 Mpc. The Dn-sigma relation, which is independently calibrated, gives 3.08 +/- 0.85 Mpc and 3.23 +/- 0.67 Mpc from photometry in B and K`, respectively. The weighted mean of the three estimates is 3.01 +/- 0.30 Mpc. The distance and luminosity make Maffei 1 the nearest giant elliptical galaxy. The radial velocity of Maffei 1 is +66.4 +/- 5.0 km/s, significantly higher than the accepted value of -10 km/s. The Hubble distance corresponding to the mean velocity of Maffei 1, Maffei 2 and IC342 is 3.5 Mpc. Thus, it is unlikely that Maffei 1 has had any influence on Local Group dynamics

    The large scale dust lanes of the Galactic bar

    Full text link
    (abridged) By comparing the distribution of dust and gas in the central regions of the Galaxy, we aim to obtain new insights into the properties of the offset dust lanes leading the bar's major axis in the Milky Way. On the one hand, the molecular emission of the dust lanes is extracted from the observed CO l-b-V distribution according to the interpretation of a dynamical model. On the other hand, a three dimensional extinction map of the Galactic central region constructed from near-infrared observations is used as a tracer of the dust itself and clearly reveals dust lanes in its face-on projection. Comparison of the position of both independent detections of the dust lanes is performed in the (l, b) plane. These two completely independent methods are used to provide a coherent picture of the dust lanes in the Milky Way bar. In both the gas and dust distributions, the dust lanes are found to be out of the Galactic plane, appearing at negative latitudes for l > 0 deg and at positive latitudes for l < 0 deg. However, even though there is substantial overlap between the two components, they are offset from one another with the dust appearing to lie closer to the b = 0 deg plane. Two scenarios are proposed to explain the observed offset. The first involves grain destruction by the bar shock and reformation downstream. Due to the decrease in velocity caused by the shock, this occurs at lower z. The second assumes that the gas and dust remain on a common tilted plane, but that the molecular gas decouples from the Milky Way's magnetic field, itself strong enough to resist the shear of the bar's shock. The diffuse gas and dust remain coupled to the field and are carried further downstream. This second scenario has recently been suggested in order to explain observations of the barred galaxy NGC 1097.Comment: 4 pages, 5 figures, accepted for publication in Astronomy and Astrophysics letter

    Does the revised cardiac risk index predict cardiac complications following elective lung resection?

    Get PDF
    Background: Revised Cardiac Risk Index (RCRI) score and Thoracic Revised Cardiac Risk Index (ThRCRI) score were developed to predict the risks of postoperative major cardiac complications in generic surgical population and thoracic surgery respectively. This study aims to determine the accuracy of these scores in predicting the risk of developing cardiac complications including atrial arrhythmias after lung resection surgery in adults. Methods: We studied 703 patients undergoing lung resection surgery in a tertiary thoracic surgery centre. Observed outcome measures of postoperative cardiac morbidity and mortality were compared against those predicted by risk. Results: Postoperative major cardiac complications and supraventricular arrhythmias occurred in 4.8% of patients. Both index scores had poor discriminative ability for predicting postoperative cardiac complications with an area under receiver operating characteristic (ROC) curve of 0.59 (95% CI 0.51-0.67) for the RCRI score and 0.57 (95% CI 0.49-0.66) for the ThRCRI score. Conclusions: In our cohort, RCRI and ThRCRI scores failed to accurately predict the risk of cardiac complications in patients undergoing elective resection of lung cancer. The British Thoracic Society (BTS) recommendation to seek a cardiology referral for all asymptomatic pre-operative lung resection patients with > 3 RCRI risk factors is thus unlikely to be of clinical benefit
    • 

    corecore