299 research outputs found
Amelioration of photic injury in rat retina by ascorbic acid: a histopathologic
It has been postulated that ascorbic acid may help to protect the retina from oxidative insult by light. To confirm this hypothesis, the authors compared light-damaged retinas of rats with or without ascorbate supplement by morphologic and morphometric studies at different time periods after light exposure. No dramatic morphologic differences were observed in the photoreceptor-retinal pigment epithelium complex between the two groups six hr after light exposure to 200 to 250-foot candles of visible light. Six to 13 days after 24 hr of exposure, the retina of rats that received ascorbate supplement showed significantly less severe damage than the retina of unsupplemented rats. The superior and temporal quadrants of the retina appeared to be most susceptible to the light damage when comparing rats with or without ascorbate supplement. These findings suggested that ascorbate ameliorates the photic injury in rat retina. Invest Ophthalmol Vis Sci 26: [1589][1590][1591][1592][1593][1594][1595][1596][1597][1598] 1985 Although the mechanisms of photic injury to the retina have not been determined definitely, oxidative reaction is believed to play an important role. 1 ' 2 Light acts on some photo-excitable components in the retina to produce superoxide radicals, which may induce plasma membrane injury. It is postulated that, as a natural antioxidant, ascorbic acid may neutralize these superoxide radicals and provide protection for the retina 3 " 5 and other tissues such as lens and brain, which contain abundant ascorbic acid. 6 ' 7 In a previous report, we exposed guinea pig and baboon retinas to light and observed that the reduced ascorbate in the retina was decreased, Materials and Methods Sixteen 21-day-old albino rats were kept in a 12-hr cycle of 5-foot candle light and darkness and were fed a normal diet adlibitum for 30 days before the experiment. Before exposure to intense visible light, rats were dark adapted for 16 to 18 hr. Eight rats were injected intraperitoneally with a dose of 0.5 g/kg of ascorbic acid 24 hr before and just before intense light exposure. Six rats fed a normal diet and six rats that received ascorbic acid supplement were exposed to green-filtered fluorescent light (Plexiglas #2092 filter; Polycast Technology Corp.; Stamford; CT) of 200 to 250 foot candles for 24 hr. Normal rat were paired with ascorbate-treated rat during light exposure. Following light exposure, the animals were returned to a totally dark environment. Four rats, two fed a normal diet and two that received ascorbic acid supplement, were kept in a cyclic light environment as controls. The rats were killed six hr, six days, and 13 days after light exposure. The right eyes were removed for rhodopsin measurement
Developing a decision aid to guide public sector health policy decisions: A study protocol
<p>Abstract</p> <p>Background</p> <p>Decision aids have been developed in a number of health disciplines to support evidence-informed decision making, including patient decision aids and clinical practice guidelines. However, policy contexts differ from clinical contexts in terms of complexity and uncertainty, requiring different approaches for identifying, interpreting, and applying many different types of evidence to support decisions. With few studies in the literature offering decision guidance specifically to health policymakers, the present study aims to facilitate the structured and systematic incorporation of research evidence and, where there is currently very little guidance, values and other non-research-based evidence, into the policy making process. The resulting decision aid is intended to help public sector health policy decision makers who are tasked with making evidence-informed decisions on behalf of populations. The intent is not to develop a decision aid that will yield uniform recommendations across jurisdictions, but rather to facilitate more transparent policy decisions that reflect a balanced consideration of all relevant factors.</p> <p>Methods/design</p> <p>The study comprises three phases: a modified meta-narrative review, the use of focus groups, and the application of a Delphi method. The modified meta-narrative review will inform the initial development of the decision aid by identifying as many policy decision factors as possible and other features of methodological guidance deemed to be desirable in the literatures of all relevant disciplines. The first of two focus groups will then seek to marry these findings with focus group members' own experience and expertise in public sector population-based health policy making and screening decisions. The second focus group will examine issues surrounding the application of the decision aid and act as a sounding board for initial feedback and refinement of the draft decision aid. Finally, the Delphi method will be used to further inform and refine the decision aid with a larger audience of potential end-users.</p> <p>Discussion</p> <p>The product of this research will be a working version of a decision aid to support policy makers in population-based health policy decisions. The decision aid will address the need for more structured and systematic ways of incorporating various evidentiary sources where applicable.</p
Autophagy and Exosomes in the Aged Retinal Pigment Epithelium: Possible Relevance to Drusen Formation and Age-Related Macular Degeneration
Age-related macular degeneration (AMD) is a major cause of loss of central vision in the elderly. The formation of drusen, an extracellular, amorphous deposit of material on Bruch's membrane in the macula of the retina, occurs early in the course of the disease. Although some of the molecular components of drusen are known, there is no understanding of the cell biology that leads to the formation of drusen. We have previously demonstrated increased mitochondrial DNA (mtDNA) damage and decreased DNA repair enzyme capabilities in the rodent RPE/choroid with age. In this study, we found that drusen in AMD donor eyes contain markers for autophagy and exosomes. Furthermore, these markers are also found in the region of Bruch's membrane in old mice. By in vitro modeling increased mtDNA damage induced by rotenone, an inhibitor of mitochondrial complex I, in the RPE, we found that the phagocytic activity was not altered but that there were: 1) increased autophagic markers, 2) decreased lysosomal activity, 3) increased exocytotic activity and 4) release of chemoattractants. Exosomes released by the stressed RPE are coated with complement and can bind complement factor H, mutations of which are associated with AMD. We speculate that increased autophagy and the release of intracellular proteins via exosomes by the aged RPE may contribute to the formation of drusen. Molecular and cellular changes in the old RPE may underlie susceptibility to genetic mutations that are found in AMD patients and may be associated with the pathogenesis of AMD in the elderly
Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants
partially_open1412sĂŹWe present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the weave semicoherent method, which sums matched-filter detection-statistic values over many time segments spanning the observation period. No gravitational wave signal is detected in the search band of 20â976 Hz for assumed source ages greater than 300 years for Cas A and greater than 700 years for Vela Jr. Estimates from simulated continuous wave signals indicate we achieve the most sensitive results to date across the explored parameter space volume, probing to strain magnitudes as low as
âŒ6.3Ă10^â26 for Cas A and âŒ5.6Ă10^â26 for Vela Jr. at frequencies near 166 Hz at 95% efficiency.openAbbott, R.; Abbott, T.âD.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.âX.; Adya, V.âB.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.âD.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P.âA.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S.âB.; Anderson, W.âG.; Andrade, T.; Andres, N.; AndriÄ, T.; Angelova, S.âV.; Ansoldi, S.; Antelis, J.âM.; Antier, S.; Appert, S.; Arai, K.; Araya, M.âC.; Areeda, J.âS.; ArĂšne, M.; Arnaud, N.; Aronson, S.âM.; Arun, K.âG.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S.âM.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M.âK.âM.; Badger, C.; Bae, S.; Baer, A.âM.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S.âW.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J.âC.; Barbieri, C.; Barish, B.âC.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M.âA.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J.âC.; Baylor, A.âC.; Bazzan, M.; BĂ©csy, B.; Bedakihale, V.âM.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T.âF.; Bentley, J.âD.; BenYaala, M.; Bergamin, F.; Berger, B.âK.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I.âA.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi, M.; Bizouard, M.-A.; Blackburn, J.âK.; Blair, C.âD.; Blair, D.âG.; Blair, R.âM.; Bobba, F.; Bode, N.; Boer, M.; Bogaert, G.; Boldrini, M.; Bonavena, L.âD.; Bondu, F.; Bonilla, E.; Bonnand, R.; Booker, P.; Boom, B.âA.; Bork, R.; Boschi, V.; Bose, N.; Bose, S.; Bossilkov, V.; Boudart, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P.âR.; Bramley, A.; Branch, A.; Branchesi, M.; Brau, J.âE.; Breschi, M.; Briant, T.; Briggs, J.âH.; Brillet, A.; Brinkmann, M.; Brockill, P.; Brooks, A.âF.; Brooks, J.; Brown, D.âD.; Brunett, S.; Bruno, G.; Bruntz, R.; Bryant, J.; Bulik, T.; Bulten, H.âJ.; Buonanno, A.; Buscicchio, R.; Buskulic, D.; Buy, C.; Byer, R.âL.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. CalderĂłn; Callaghan, J.âD.; Callister, T.âA.; Calloni, E.; Cameron, J.; Camp, J.âB.; Canepa, M.; Canevarolo, S.; Cannavacciuolo, M.; Cannon, K.âC.; Cao, H.; Capote, E.; Carapella, G.; Carbognani, F.; Carlin, J.âB.; Carney, M.âF.; Carpinelli, M.; Carrillo, G.; Carullo, G.; Carver, T.âL.; Diaz, J. Casanueva; Casentini, C.; Castaldi, G.; Caudill, S.; CavagliĂ , M.; Cavalier, F.; Cavalieri, R.; Ceasar, M.; Cella, G.; CerdĂĄ-DurĂĄn, P.; Cesarini, E.; Chaibi, W.; Chakravarti, K.; Subrahmanya, S. Chalathadka; Champion, E.; Chan, C.-H.; Chan, C.; Chan, C.âL.; Chan, K.; Chandra, K.; Chanial, P.; Chao, S.; Charlton, P.; Chase, E.âA.; Chassande-Mottin, E.; Chatterjee, C.; Chatterjee, Debarati; Chatterjee, Deep; Chaturvedi, M.; Chaty, S.; Chen, H.âY.; Chen, J.; Chen, X.; Chen, Y.; Chen, Z.; Cheng, H.; Cheong, C.âK.; Cheung, H.âY.; Chia, H.âY.; Chiadini, F.; Chiarini, G.; Chierici, R.; Chincarini, A.; Chiofalo, M.âL.; Chiummo, A.; Cho, G.; Cho, H.âS.; Choudhary, R.âK.; Choudhary, S.; Christensen, N.; Chu, Q.; Chua, S.; Chung, K.âW.; Ciani, G.; Ciecielag, P.; CieĆlar, M.; Cifaldi, M.; Ciobanu, A.âA.; Ciolfi, R.; Cipriano, F.; Cirone, A.; Clara, F.; Clark, E.âN.; Clark, J.âA.; Clarke, L.; Clearwater, P.; Clesse, S.; Cleva, F.; Coccia, E.; Codazzo, E.; Cohadon, P.-F.; Cohen, D.âE.; Cohen, L.; Colleoni, M.; Collette, C.âG.; Colombo, A.; Colpi, M.; Compton, C.âM.; Constancio, M.; Conti, L.; Cooper, S.âJ.; Corban, P.; Corbitt, T.âR.; Cordero-CarriĂłn, I.; Corezzi, S.; Corley, K.âR.; Cornish, N.; Corre, D.; Corsi, A.; Cortese, S.; Costa, C.âA.; Cotesta, R.; Coughlin, M.âW.; Coulon, J.-P.; Countryman, S.âT.; Cousins, B.; Couvares, P.; Coward, D.âM.; Cowart, M.âJ.; Coyne, D.âC.; Coyne, R.; Creighton, J.âD.âE.; Creighton, T.âD.; Criswell, A.âW.; Croquette, M.; Crowder, S.âG.; Cudell, J.âR.; Cullen, T.âJ.; Cumming, A.; Cummings, R.; Cunningham, L.; Cuoco, E.; CuryĆo, M.; Dabadie, P.; Canton, T. Dal; DallâOsso, S.; DĂĄlya, G.; Dana, A.; DaneshgaranBajastani, L.âM.; DâAngelo, B.; Danilishin, S.; DâAntonio, S.; Danzmann, K.; Darsow-Fromm, C.; Dasgupta, A.; Datrier, L.âE.âH.; Datta, S.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G.âS.; Davis, D.; Davis, M.âC.; Daw, E.âJ.; Dean, R.; DeBra, D.; Deenadayalan, M.; Degallaix, J.; De Laurentis, M.; DelĂ©glise, S.; Del Favero, V.; De Lillo, F.; De Lillo, N.; Del Pozzo, W.; DeMarchi, L.âM.; De Matteis, F.; DâEmilio, V.; Demos, N.; Dent, T.; Depasse, A.; De Pietri, R.; De Rosa, R.; De Rossi, C.; DeSalvo, R.; De Simone, R.; Dhurandhar, S.; DĂaz, M.âC.; Diaz-Ortiz, M.; Didio, N.âA.; Dietrich, T.; Di Fiore, L.; Di Fronzo, C.; Di Giorgio, C.; Di Giovanni, F.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Ding, B.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Divakarla, A.âK.; Dmitriev, A.; Doctor, Z.; DâOnofrio, L.; Donovan, F.; Dooley, K.âL.; Doravari, S.; Dorrington, I.; Drago, M.; Driggers, J.âC.; Drori, Y.; Ducoin, J.-G.; Dupej, P.; Durante, O.; DâUrso, D.; Duverne, P.-A.; Dwyer, S.âE.; Eassa, C.; Easter, P.âJ.; Ebersold, M.; Eckhardt, T.; Eddolls, G.; Edelman, B.; Edo, T.âB.; Edy, O.; Effler, A.; Eichholz, J.; Eikenberry, S.âS.; Eisenmann, M.; Eisenstein, R.âA.; Ejlli, A.; Engelby, E.; Errico, L.; Essick, R.âC.; EstellĂ©s, H.; Estevez, D.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T.âM.; Ewing, B.âE.; Fafone, V.; Fair, H.; Fairhurst, S.; Farah, A.âM.; Farinon, S.; Farr, B.; Farr, W.âM.; Farrow, N.âW.; Fauchon-Jones, E.âJ.; Favaro, G.; Favata, M.; Fays, M.; Fazio, M.; Feicht, J.; Fejer, M.âM.; Fenyvesi, E.; Ferguson, D.âL.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, T.âA.; Fidecaro, F.; Figura, P.; Fiori, I.; Fishbach, M.; Fisher, R.âP.; Fittipaldi, R.; Fiumara, V.; Flaminio, R.; Floden, E.; Fong, H.; Font, J.âA.; Fornal, B.; Forsyth, P.âW.âF.; Franke, A.; Frasca, S.; Frasconi, F.; Frederick, C.; Freed, J.âP.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V.âV.; FronzĂ©, G.âG.; Fulda, P.; Fyffe, M.; Gabbard, H.âA.; Gadre, B.âU.; Gair, J.âR.; Gais, J.; Galaudage, S.; Gamba, R.; Ganapathy, D.; Ganguly, A.; Gaonkar, S.âG.; Garaventa, B.; GarcĂa-NĂșñez, C.; GarcĂa-QuirĂłs, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gayathri, V.; Gemme, G.; Gennai, A.; George, J.; Gerberding, O.; Gergely, L.; Gewecke, P.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, Shaon; Ghosh, Shrobana; Giacomazzo, B.; Giacoppo, L.; Giaime, J.âA.; Giardina, K.âD.; Gibson, D.âR.; Gier, C.; Giesler, M.; Giri, P.; Gissi, F.; Glanzer, J.; Gleckl, A.âE.; Godwin, P.; Goetz, E.; Goetz, R.; Gohlke, N.; Goncharov, B.; GonzĂĄlez, G.; Gopakumar, A.; Gosselin, M.; Gouaty, R.; Gould, D.âW.; Grace, B.; Grado, A.; Granata, M.; Granata, V.; Grant, A.; Gras, S.; Grassia, P.; Gray, C.; Gray, R.; Greco, G.; Green, A.âC.; Green, R.; Gretarsson, A.âM.; Gretarsson, E.âM.; Griffith, D.; Griffiths, W.; Griggs, H.âL.; Grignani, G.; Grimaldi, A.; Grimm, S.âJ.; Grote, H.; Grunewald, S.; Gruning, P.; Guerra, D.; Guidi, Gianluca; Guimaraes, A.âR.; GuixĂ©, G.; Gulati, H.âK.; Guo, H.-K.; Guo, Y.; Gupta, Anchal; Gupta, Anuradha; Gupta, P.; Gustafson, E.âK.; Gustafson, R.; Guzman, F.; Haegel, L.; Halim, O.; Hall, E.âD.; Hamilton, E.âZ.; Hammond, G.; Haney, M.; Hanks, J.; Hanna, C.; Hannam, M.âD.; Hannuksela, O.; Hansen, H.; Hansen, T.âJ.; Hanson, J.; Harder, T.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G.âM.; Harry, I.âW.; Hartwig, D.; Haskell, B.; Hasskew, R.âK.; Haster, C.-J.; Haughian, K.; Hayes, F.âJ.; Healy, J.; Heidmann, A.; Heidt, A.; Heintze, M.âC.; Heinze, J.; Heinzel, J.; Heitmann, H.; Hellman, F.; Hello, P.; Helmling-Cornell, A.âF.; Hemming, G.; Hendry, M.; Heng, I.âS.; Hennes, E.; Hennig, J.; Hennig, M.âH.; Hernandez, A.âG.; Vivanco, F. Hernandez; Heurs, M.; Hild, S.; Hill, P.; Hines, A.âS.; Hochheim, S.; Hofman, D.; Hohmann, J.âN.; Holcomb, D.âG.; Holland, N.âA.; Hollows, I.âJ.; Holmes, Z.âJ.; Holt, K.; Holz, D.âE.; Hopkins, P.; Hough, J.; Hourihane, S.; Howell, E.âJ.; Hoy, C.âG.; Hoyland, D.; Hreibi, A.; Hsu, Y.; Huang, Y.; HĂŒbner, M.âT.; Huddart, A.âD.; Hughey, B.; Hui, V.; Husa, S.; Huttner, S.âH.; Huxford, R.; Huynh-Dinh, T.; Idzkowski, B.; Iess, A.; Ingram, C.; Isi, M.; Isleif, K.; Iyer, B.âR.; JaberianHamedan, V.; Jacqmin, T.; Jadhav, S.âJ.; Jadhav, S.âP.; James, A.âL.; Jan, A.âZ.; Jani, K.; Janquart, J.; Janssens, K.; Janthalur, N.âN.; Jaranowski, P.; Jariwala, D.; Jaume, R.; Jenkins, A.âC.; Jenner, K.; Jeunon, M.; Jia, W.; Johns, G.âR.; Jones, A.âW.; Jones, D.âI.; Jones, J.âD.; Jones, P.; Jones, R.; Jonker, R.âJ.âG.; Ju, L.; Junker, J.; Juste, V.; Kalaghatgi, C.âV.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J.âB.; Kao, Y.; Kapadia, S.âJ.; Kapasi, D.âP.; Karat, S.; Karathanasis, C.; Karki, S.; Kashyap, R.; Kasprzack, M.; Kastaun, W.; Katsanevas, S.; Katsavounidis, E.; Katzman, W.; Kaur, T.; Kawabe, K.; KĂ©fĂ©lian, F.; Keitel, D.; Key, J.âS.; Khadka, S.; Khalili, F.âY.; Khan, S.; Khazanov, E.âA.; Khetan, N.; Khursheed, M.; Kijbunchoo, N.; Kim, C.; Kim, J.âC.; Kim, K.; Kim, W.âS.; Kim, Y.-M.; Kimball, C.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J.âS.; Kleybolte, L.; Klimenko, S.; Knee, A.âM.; Knowles, T.âD.; Knyazev, E.; Koch, P.; Koekoek, G.; Koley, S.; Kolitsidou, P.; Kolstein, M.; Komori, K.; Kondrashov, V.; Kontos, A.; Koper, N.; Korobko, M.; Kovalam, M.; Kozak, D.âB.; Kringel, V.; Krishnendu, N.âV.; KrĂłlak, A.; Kuehn, G.; Kuei, F.; Kuijer, P.; Kumar, A.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuns, K.; Kuwahara, S.; Lagabbe, P.; Laghi, D.; Lalande, E.; Lam, T.âL.; Lamberts, A.; Landry, M.; Lane, B.âB.; Lang, R.âN.; Lange, J.; Lantz, B.; La Rosa, I.; Lartaux-Vollard, A.; Lasky, P.âD.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lecoeuche, Y.âK.; Lee, H.âM.; Lee, H.âW.; Lee, J.; Lee, K.; Lehmann, J.; LemaĂźtre, A.; Leroy, N.; Letendre, N.; Levesque, C.; Levin, Y.; Leviton, J.âN.; Leyde, K.; Li, A.âK.âY.; Li, B.; Li, J.; Li, T.âG.âF.; Li, X.; Linde, F.; Linker, S.âD.; Linley, J.âN.; Littenberg, T.âB.; Liu, J.; Liu, K.; Liu, X.; Llamas, F.; Llorens-Monteagudo, M.; Lo, R.âK.âL.; Lockwood, A.; London, L.âT.; Longo, A.; Lopez, D.; Portilla, M. Lopez; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lott, T.âP.; Lough, J.âD.; Lousto, C.âO.; Lovelace, G.; Lucaccioni, J.âF.; LĂŒck, H.; Lumaca, D.; Lundgren, A.âP.; Lynam, J.âE.; Macas, R.; MacInnis, M.; Macleod, D.âM.; MacMillan, I.âA.âO.; Macquet, A.; Hernandez, I. Magaña; MagazzĂč, C.; Magee, R.âM.; Maggiore, R.; Magnozzi, M.; Mahesh, S.; Majorana, E.; Makarem, C.; Maksimovic, I.; Maliakal, S.; Malik, A.; Man, N.; Mandic, V.; Mangano, V.; Mango, J.âL.; Mansell, G.âL.; Manske, M.; Mantovani, M.; Mapelli, M.; Marchesoni, F.; Marion, F.; Mark, Z.; MĂĄrka, S.; MĂĄrka, Z.; Markakis, C.; Markosyan, A.âS.; Markowitz, A.; Maros, E.; Marquina, A.; Marsat, S.; Martelli, F.; Martin, I.âW.; Martin, R.âM.; Martinez, M.; Martinez, V.âA.; Martinez, V.; Martinovic, K.; Martynov, D.âV.; Marx, E.âJ.; Masalehdan, H.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T.âJ.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Mateu-Lucena, M.; Matichard, F.; Matiushechkina, M.; Mavalvala, N.; McCann, J.âJ.; McCarthy, R.; McClelland, D.âE.; McClincy, P.âK.; McCormick, S.; McCuller, L.; McGhee, G.âI.; McGuire, S.âC.; McIsaac, C.; McIver, J.; McRae, T.; McWilliams, S.âT.; Meacher, D.; Mehmet, M.; Mehta, A.âK.; Meijer, Q.; Melatos, A.; Melchor, D.âA.; Mendell, G.; Menendez-Vazquez, A.; Menoni, C.âS.; Mercer, R.âA.; Mereni, L.; Merfeld, K.; Merilh, E.âL.; Merritt, J.âD.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P.âM.; Meylahn, F.; Mhaske, A.; Miani, A.; Miao, H.; Michaloliakos, I.; Michel, C.; Middleton, H.; Milano, L.; Miller, A.; Miller, A.âL.; Miller, B.; Millhouse, M.; Mills, J.âC.; Milotti, E.; Minazzoli, O.; Minenkov, Y.; Mir, Ll.âM.; Miravet-TenĂ©s, M.; Mishra, C.; Mishra, T.; Mistry, T.; Mitra, S.; Mitrofanov, V.âP.; Mitselmakher, G.; Mittleman, R.; Mo, Geoffrey; Moguel, E.; Mogushi, K.; Mohapatra, S.âR.âP.; Mohite, S.âR.; Molina, I.; Molina-Ruiz, M.; Mondin, M.; Montani, M.; Moore, C.âJ.; Moraru, D.; Morawski, F.; More, A.; Moreno, C.; Moreno, G.; Morisaki, S.; Mours, B.; Mow-Lowry, C.âM.; Mozzon, S.; Muciaccia, F.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, Soma; Mukherjee, Subroto; Mukherjee, Suvodip; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E.âA.; Murray, P.âG.; Musenich, R.; Muusse, S.; Nadji, S.âL.; Nagar, A.; Napolano, V.; Nardecchia, I.; Naticchioni, L.; Nayak, B.; Nayak, R.âK.; Neil, B.âF.; Neilson, J.; Nelemans, G.; Nelson, T.âJ.âN.; Nery, M.; Neubauer, P.; Neunzert, A.; Ng, K.âY.; Ng, S.âW.âS.; Nguyen, C.; Nguyen, P.; Nguyen, T.; Nichols, S.âA.; Nissanke, S.; Nitoglia, E.; Nocera, F.; Norman, M.; North, C.; Nuttall, L.âK.; Oberling, J.; OâBrien, B.âD.; OâDell, J.; Oelker, E.; Oganesyan, G.; Oh, J.âJ.; Oh, S.âH.; Ohme, F.; Ohta, H.; Okada, M.âA.; Olivetto, C.; Oram, R.; OâReilly, B.; Ormiston, R.âG.; Ormsby, N.âD.; Ortega, L.âF.; OâShaughnessy, R.; OâShea, E.; Ossokine, S.; Osthelder, C.; Ottaway, D.âJ.; Overmier, H.; Pace, A.âE.; Pagano, G.; Page, M.âA.; Pagliaroli, G.; Pai, A.; Pai, S.âA.; Palamos, J.âR.; Palashov, O.; Palomba, C.; Pan, H.; Panda, P.âK.; Pang, P.âT.âH.; Pankow, C.; Pannarale, F.; Pant, B.âC.; Panther, F.âH.; Paoletti, F.; Paoli, A.; Paolone, A.; Park, H.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, M.; Pathak, M.; Patricelli, B.; Patron, A.âS.; Paul, S.; Payne, E.; Pedraza, M.; Pegoraro, M.; Pele, A.; Penn, S.; Perego, A.; Pereira, A.; Pereira, T.; Perez, C.âJ.; PĂ©rigois, C.; Perkins, C.âC.; Perreca, A.; PerriĂšs, S.; Petermann, J.; Petterson, D.; Pfeiffer, H.âP.; Pham, K.âA.; Phukon, K.âS.; Piccinni, O.âJ.; Pichot, M.; Piendibene, M.; Piergiovanni, F.; Pierini, L.; Pierro, V.; Pillant, G.; Pillas, M.; Pilo, F.; Pinard, L.; Pinto, I.âM.; Pinto, M.; Piotrzkowski, K.; Pirello, M.; Pitkin, M.âD.; Placidi, E.; Planas, L.; Plastino, W.; Pluchar, C.; Poggiani, R.; Polini, E.; Pong, D.âY.âT.; Ponrathnam, S.; Popolizio, P.; Porter, E.âK.; Poulton, R.; Powell, J.; Pracchia, M.; Pradier, T.; Prajapati, A.âK.; Prasai, K.; Prasanna, R.; Pratten, G.; Principe, M.; Prodi, G.âA.; Prokhorov, L.; Prosposito, P.; Prudenzi, L.; Puecher, A.; Punturo, M.; Puosi, F.; Puppo, P.; PĂŒrrer, M.; Qi, H.; Quetschke, V.; Quitzow-James, R.; Raab, F.âJ.; Raaijmakers, G.; Radkins, H.; Radulesco, N.; Raffai, P.; Rail, S.âX.; Raja, S.; Rajan, C.; Ramirez, K.âE.; Ramirez, T.âD.; Ramos-Buades, A.; Rana, J.; Rapagnani, P.; Rapol, U.âD.; Ray, A.; Raymond, V.; Raza, N.; Razzano, M.; Read, J.; Rees, L.âA.; Regimbau, T.; Rei, L.; Reid, S.; Reid, S.âW.; Reitze, D.âH.; Relton, P.; Renzini, A.; Rettegno, P.; Rezac, M.; Ricci, F.; Richards, D.; Richardson, J.âW.; Richardson, L.; Riemenschneider, G.; Riles, K.; Rinaldi, S.; Rink, K.; Rizzo, M.; Robertson, N.âA.; Robie, R.; Robinet, F.; Rocchi, A.; Rodriguez, S.; Rolland, L.; Rollins, J.âG.; Romanelli, M.; Romano, R.; Romel, C.âL.; Romero-RodrĂguez, A.; Romero-Shaw, I.âM.; Romie, J.âH.; Ronchini, S.; Rosa, L.; Rose, C.âA.; RosiĆska, D.; Ross, M.âP.; Rowan, S.; Rowlinson, S.âJ.; Roy, S.; Roy, Santosh; Roy, Soumen; Rozza, D.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadiq, J.; Sakellariadou, M.; Salafia, O.âS.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sanchez, E.âJ.; Sanchez, J.âH.; Sanchez, L.âE.; Sanchis-Gual, N.; Sanders, J.âR.; Sanuy, A.; Saravanan, T.âR.; Sarin, N.; Sassolas, B.; Satari, H.; Sathyaprakash, B.âS.; Sauter, O.; Savage, R.âL.; Sawant, D.; Sawant, H.âL.; Sayah, S.; Schaetzl, D.; Scheel, M.; Scheuer, J.; Schiworski, M.; Schmidt, P.; Schmidt, S.; Schnabel, R.; Schneewind, M.; Schofield, R.âM.âS.; Schönbeck, A.; Schulte, B.âW.; Schutz, B.âF.; Schwartz, E.; Scott, J.; Scott, S.âM.; Seglar-Arroyo, M.; Sellers, D.; Sengupta, A.âS.; Sentenac, D.; Seo, E.âG.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaffer, T.; Shahriar, M.âS.; Shams, B.; Sharma, A.; Sharma, P.; Shawhan, P.; Shcheblanov, N.âS.; Shikauchi, M.; Shoemaker, D.âH.; Shoemaker, D.âM.; ShyamSundar, S.; Sieniawska, M.; Sigg, D.; Singer, L.âP.; Singh, D.; Singh, N.; Singha, A.; Sintes, A.âM.; Sipala, V.; Skliris, V.; Slagmolen, B.âJ.âJ.; Slaven-Blair, T.âJ.; Smetana, J.; Smith, J.âR.; Smith, R.âJ.âE.; Soldateschi, J.; Somala, S.âN.; Son, E.âJ.; Soni, K.; Soni, S.; Sordini, V.; Sorrentino, F.; Sorrentino, N.; Soulard, R.; Souradeep, T.; Sowell, E.; Spagnuolo, V.; Spencer, A.âP.; Spera, M.; Srinivasan, R.; Srivastava, A.âK.; Srivastava, V.; Staats, K.; Stachie, C.; Steer, D.âA.; Steinlechner, J.; Steinlechner, S.; Stops, D.âJ.; Stover, M.; Strain, K.âA.; Strang, L.âC.; Stratta, G.; Strunk, A.; Sturani, R.; Stuver, A.âL.; Sudhagar, S.; Sudhir, V.; Suh, H.âG.; Summerscales, T.âZ.; Sun, H.; Sun, L.; Sunil, S.; Sur, A.; Suresh, J.; Sutton, P.âJ.; Swinkels, B.âL.; SzczepaĆczyk, M.âJ.; Szewczyk, P.; Tacca, M.; Tait, S.âC.; Talbot, C.âJ.; Talbot, C.; Tanasijczuk, A.âJ.; Tanner, D.âB.; Tao, D.; Tao, L.; MartĂn, E.âN. Tapia San; Taranto, C.; Tasson, J.âD.; Tenorio, R.; Terhune, J.âE.; Terkowski, L.; Thirugnanasambandam, M.âP.; Thomas, M.; Thomas, P.; Thompson, J.âE.; Thondapu, S.âR.; Thorne, K.âA.; Thrane, E.; Tiwari, Shubhanshu; Tiwari, Srishti; Tiwari, V.; Toivonen, A.âM.; Toland, K.; Tolley, A.âE.; Tonelli, M.; Torres-FornĂ©, A.; Torrie, C.âI.; e Melo, I. Tosta; TöyrĂ€, D.; Trapananti, A.; Travasso, F.; Traylor, G.; Trevor, M.; Tringali, M.âC.; Tripathee, A.; Troiano, L.; Trovato, A.; Trozzo, L.; Trudeau, R.âJ.; Tsai, D.âS.; Tsai, D.; Tsang, K.âW.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tsutsui, T.; Turbang, K.; Turconi, M.; Ubhi, A.âS.; Udall, R.âP.; Ueno, K.; Unnikrishnan, C.âS.; Urban, A.âL.; Utina, A.; Vahlbruch, H.; Vajente, G.; Vajpeyi, A.; Valdes, G.; Valentini, M.; Valsan, V.; van Bakel, N.; van Beuzekom, M.; van den Brand, J.âF.âJ.; Van Den Broeck, C.; Vander-Hyde, D.âC.; van der Schaaf, L.; van Heijningen, J.âV.; Vanosky, J.; van Remortel, N.; Vardaro, M.; Vargas, A.âF.; Varma, V.; VasĂșth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.âJ.; Venneberg, J.; Venugopalan, G.; Verkindt, D.; Verma, P.; Verma, Y.; Veske, D.; Vetrano, F.; Vicere', Andrea; Vidyant, S.; Viets, A.âD.; Vijaykumar, A.; Villa-Ortega, V.; Vinet, J.-Y.; Virtuoso, A.; Vitale, S.; Vo, T.; Vocca, H.; von Reis, E.âR.âG.; von Wrangel, J.âS.âA.; Vorvick, C.; Vyatchanin, S.âP.; Wade, L.âE.; Wade, M.; Wagner, K.âJ.; Walet, R.âC.; Walker, M.; Wallace, G.âS.; Wallace, L.; Walsh, S.; Wang, J.âZ.; Wang, W.âH.; Ward, R.âL.; Warner, J.; Was, M.; Washington, N.âY.; Watchi, J.; Weaver, B.; Webster, S.âA.; Weinert, M.; Weinstein, A.âJ.; Weiss, R.; Weldon, G.; Weller, C.âM.; Wellmann, F.; Wen, L.; WeĂels, P.; Wette, K.; Whelan, J.âT.; White, D.âD.; Whiting, B.âF.; Whittle, C.; Wilken, D.; Williams, D.; Williams, M.âJ.; Williamson, A.âR.; Willis, J.âL.; Willke, B.; Wilson, D.âJ.; Winkler, W.; Wipf, C.âC.; Wlodarczyk, T.; Woan, G.; Woehler, J.; Wofford, J.âK.; Wong, I.âC.âF.; Wu, D.âS.; Wysocki, D.âM.; Xiao, L.; Yamamoto, H.; Yang, F.âW.; Yang, L.; Yang, Yang; Yang, Z.; Yap, M.âJ.; Yeeles, D.âW.; Yelikar, A.âB.; Ying, M.; Yoo, J.; Yu, Hang; Yu, Haocun; ZadroĆŒny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, J.; Zhang, L.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhao, G.; Zhao, Yue; Zhou, R.; Zhou, Z.; Zhu, X.âJ.; Zimmerman, A.âB.; Zucker, M.âE.; Zweizig, J.Abbott, R.; Abbott, T. âD.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R. âX.; Adya, V. âB.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. âD.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P. âA.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S. âB.; Anderson, W. âG.; Andrade, T.; Andres, N.; AndriÄ, T.; Angelova, S. âV.; Ansoldi, S.; Antelis, J. âM.; Antier, S.; Appert, S.; Arai, K.; Araya, M. âC.; Areeda, J. âS.; ArĂšne, M.; Arnaud, N.; Aronson, S. âM.; Arun, K. âG.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S. âM.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M. âK. âM.; Badger, C.; Bae, S.; Baer, A. âM.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S. âW.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J. âC.; Barbieri, C.; Barish, B. âC.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. âA.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J. âC.; Baylor, A. âC.; Bazzan, M.; BĂ©csy, B.; Bedakihale, V. âM.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T. âF.; Bentley, J. âD.; Benyaala, M.; Bergamin, F.; Berger, B. âK.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I. âA.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi,
All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems
Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most sensitive frequency band of the LIGO detectors, 50-300 Hz. Binary orbital parameters are split into four regions, comprising orbital periods of three to 45 days and projected semimajor axes of two to 40 light seconds. No detections are reported. We estimate the sensitivity of the search using simulated continuous wave signals, achieving the most sensitive results to date across the analyzed parameter space
Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)Îș with Îș=2.9-1.8+1.7 for zâČ1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3Mâ. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9Mâ. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60Mâ, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below Ïiâ0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum
Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run
We present a search for dark photon dark matter that could couple to
gravitational-wave interferometers using data from Advanced LIGO and Virgo's
third observing run. To perform this analysis, we use two methods, one based on
cross-correlation of the strain channels in the two nearly aligned LIGO
detectors, and one that looks for excess power in the strain channels of the
LIGO and Virgo detectors. The excess power method optimizes the Fourier
Transform coherence time as a function of frequency, to account for the
expected signal width due to Doppler modulations. We do not find any evidence
of dark photon dark matter with a mass between eV/, which corresponds to frequencies between 10-2000
Hz, and therefore provide upper limits on the square of the minimum coupling of
dark photons to baryons, i.e. dark matter. For the
cross-correlation method, the best median constraint on the squared coupling is
at eV/; for the
other analysis, the best constraint is at eV/. These limits improve upon those obtained
in direct dark matter detection experiments by a factor of for
eV/, and are, in absolute terms, the
most stringent constraint so far in a large mass range eV/.Comment: 20 pages, 7 figure
Search for subsolar-mass black hole binaries in the second part of Advanced LIGOâs and Advanced Virgoâs third observing run
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2â1.0 M and mass
ratio q â„ 0.1 in Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo data collected
between 2019 November 1, 15:00 UTC and 2020 March 27, 17:00 UTC. No signals were detected. The most significant candidate
has a false alarm rate of 0.2 yrâ1. We estimate the sensitivity of our search over the entirety of Advanced LIGOâs and Advanced
Virgoâs third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one
subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black
holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the
merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the
PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH 0.6 (at 90 per cent confidence)
in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions, we are unable to rule out fPBH = 1.
For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes,
we find an upper bound fDBH < 10â5 on the fraction of atomic dark matter collapsed into black holes
- âŠ