23 research outputs found

    Development of digital silicon photomultipliers based detectors for high-resolution positron emission tomography

    Get PDF

    Performance of digital silicon photomultipliers for time of flight PET scanners

    Get PDF
    The performance of Digital Silicon Photomultipliers (dSiPM) coupled to a LYSO array containing 15×15 pixels with a size of 2×2×22 mm3 is evaluated to determinate their potential for whole body Time of Flight (TOF) PET scanners. The detector pixels are smaller in size than the light sensors and therefore light spreading is required to determine the crystal where interaction occurred. A light guide of 1 mm was used to spread the light and neighbor logic (NL) configuration were employed to ensure correct crystals identification. We studied the energy resolution and coincidence resolving time (CRT) for different trigger levels. The measured average energy resolution across detector was 14.5 %. Prior to measurements of time resolution skew time calibration of dSiPM was performed. The average CRT achieved using trigger level 1 option was 376 ps FWHM. Finally, we studied the amount of events that are disregarded due to dark count effects for different trigger levels and temperatures. Our studies show that a trade-off must be made between the detector’s CRT and sensitivity due to its vulnerability to dark counts. To employ dSiPM in TOF PET systems without 1:1 coupling effective cooling is necessary to limit dark count influence

    Effects of dark counts on digital silicon photomultipliers performance

    Get PDF
    Digital Silicon Photomultipliers (dSiPM) are novel light detector that integrates single-photon avalanche photodiodes and CMOS logic into a single silicon chip and have been used for developing new, high performance detectors for Positron Emission Tomography (PET). As a solid-state devices they suffer from thermal excitation what leads to the appearance of noise events called dark counts. However, it is unclear what effect the dark counts have on the count rate performance of dSiPM. Therefore, it is necessary to investigate the event loss caused by these dark counts and to come up with optimal configuration of these devices. Here, the effects of dark counts on the performance of are evaluated. Due to the trigger architecture of dSiPM, dark counts cause start of acquisition sequence of the device. Processing of these dark counts leads to dead time of dSiPM what cause the loss of true gamma events. We studied how trigger level, validation level and validation length influence the loss of events due to dark counts. We found that validation time should be kept long (40 ns) to minimize the loss of events. Use of high trigger level and validation level also reduce the event loss caused by dark counts. However, with the high validation level, detection of events with low number of optical photons is reduced as it more difficult for these events to pass the validation threshold. The RTL refresh option was also tested to reduce the effect of dark counts. We found that this option resulted in the achieving maximum sensitivity, i.e. the highest fraction of correctly recorded true events, of dSiPM regardless of used validation and trigger levels. In cases when the scintillation light is spread over several dies, we found that the use of RTL refresh option combined with a low validation level in order to guarantee the individual validation of all required dies ensures higher sensitivity than the use of Neighbor Logic (NL). Finally we verified the dead time of dSiPM and found that is longer than specified and equal to 50 ns

    URINARY PROTEOMIC MARKERS OF IGA NEPHROPATHY, LUPUS NEPHRITIS AND MEMBRANOUS NEPHROPATHY

    Get PDF
    INTRODUCTION: Chronic kidney disease (CKD) is a worldwide public health problem, related to increased morbidity and mortality. Glomerulopathies represent major causes of CKD and require complicated diagnostics. Standard of care includes kidney biopsy in order to confirm the type of nephropathy. However, biopsy brings specific risks. Therefore, non-invasive diagnostic and prognostic methods are sought. Urinary proteomics emerged as safe and promising tool, but still requires development and improvements. Our previous studies which are part of European Patent Application from 10th June 2016 (WO/2017/212463), identified urinary markers of IgA nephropathy. They included among others: alpha-1B-glycoprotein (A1BG), alpha-l-acid glycoprotein 1 (ORM-1), ferritin light chain (FTL) and serotransferrin (TF). The aim of this study was to evaluate them in comparison to patients with glomerulopathies of different etiologies, such as lupus nephritis (LN) and membranous nephropathy (MN). METHODS: This proteomic study included patients with CKD (41 IgAN, 33 LN, 26 MN, 6 with erytrocyturia of unknown etiology) and 19 healthy controls. Urine samples were obtained from a midstream of the: first-morning (FM) and second- or third-morning (SPOT) sample. The SPOT samples were processed up to 2 h and FM samples up to 4 h after collection, by agitating and gently inverting 4-6 times, portioned into 2-ml aliquots and stored at -80°C for further measurements. Western Blotting was used for analysis of the SPOT and FM samples, ELISA and mass spectrometry for SPOT urine only. The results were related to demographic data, standard laboratory tests and GFR estimated with use of Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. RESULTS: The urinary concentrations of A1BG, ORM-1, FTL and TF were found to be higher in CKD patients than in healthy controls. Moreover, these proteins varied depending on the disease. According to ELISA measurements, patients with IgAN, erytrocyturia and LN had significantly more A1BG and ORM-1 (p < 0.05), whereas TF was more elevated in LN and MN individuals comparing to healthy controls. The western blot analysis revealed significantly elevated level of A1BG, ORM-1 and FTL in IgAN, LN and MN, comparing to healthy control. Additionally, it revealed fragmentation of A1BG in several patients and the bottom range bands tended to be most prominently elevated in IgAN patients. Mass spectrometry confirmed differences between the diseases according to the specific amino acids fragments of each tested protein. Figure 1. Western blot scans for urinary A1BG, ORM-1 and FTL in CKD patients (2-4) and healthy controls (1). CONCLUSIONS: The urinary concentrations of A1BG, ORM-1, FTL and TF are elevated in CKD patients and vary depending on the type of nephropathy. This observation suggests their differential roles in the pathophysiology of the given diseases, and we believe their evaluation may help distinguishing between nephropathies. Further studies are desired to establish the role of these urinary proteins in non-invasive disease differentiation

    In-Orbit Instrument Performance Study and Calibration for POLAR Polarization Measurements

    Full text link
    POLAR is a compact space-borne detector designed to perform reliable measurements of the polarization for transient sources like Gamma-Ray Bursts in the energy range 50-500keV. The instrument works based on the Compton Scattering principle with the plastic scintillators as the main detection material along with the multi-anode photomultiplier tube. POLAR has been launched successfully onboard the Chinese space laboratory TG-2 on 15th September, 2016. In order to reliably reconstruct the polarization information a highly detailed understanding of the instrument is required for both data analysis and Monte Carlo studies. For this purpose a full study of the in-orbit performance was performed in order to obtain the instrument calibration parameters such as noise, pedestal, gain nonlinearity of the electronics, threshold, crosstalk and gain, as well as the effect of temperature on the above parameters. Furthermore the relationship between gain and high voltage of the multi-anode photomultiplier tube has been studied and the errors on all measurement values are presented. Finally the typical systematic error on polarization measurements of Gamma-Ray Bursts due to the measurement error of the calibration parameters are estimated using Monte Carlo simulations.Comment: 43 pages, 30 figures, 1 table; Preprint accepted by NIM

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate Îł\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e
    corecore