34 research outputs found

    Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellio scaber (Crustacea, Malacostraca)?

    Get PDF
    According to the temperature-size rule (TSR), ectotherms developing under cold conditions experience slower growth as juveniles but reach a larger size at maturity. Whether temperature alone causes this phenomenon is unknown, but oxygen limitation can play a role in the temperature-size relationship. Oxygen may become limited under warm conditions when the resulting higher metabolism creates a greater demand for oxygen, especially in larger individuals. We examined the independent effects of oxygen concentration (10% and 22% O_{2}) and temperature (15 ^{\circ}C and 22 ^{\circ}C) on duration of ontogenic development, which takes place within the maternal brood pouch (marsupium), and juvenile growth in the terrestrial isopod common rough woodlouse (Porcellio scaber). Individuals inside the marsupium undergo the change from the aqueous to the gaseous environment. Under hypoxia, woodlice hatched from the marsupium sooner, but their subsequent growth was not affected by the level of oxygen. Marsupial development and juvenile growth were almost three times slower at low temperature, and marsupial development was longer in larger females but only in the cold treatment. These results show that temperature and oxygen are important ecological factors affecting developmental time and that the strength of the effect likely depends on the availability of oxygen in the environment

    Chemical and Physical Defense Traits in Two Sexual Forms of Opuntia robusta in Central Eastern Mexico

    Get PDF
    In this study, we showed that the seed output is higher in hermaphrodites than in females of O. robusta but also has a higher variance. Furthermore, the hermaphrodite sexual form is on average spinier than the female form, and reproductive cladodes are spinier in hermaphrodites than in females. In addition, we showed that hermaphrodite empty cladodes contain a higher concentration of phenolic compounds than female empty cladodes and found a possible trade-off between the production of phenolic compounds in parental cladodes and their content in daughter cladodes. There also was a possible trade-off between the density of spines on areolae and average number of areolae per cladode, and a positive relationship between physical and chemical defense traits. With the current data, we cannot conclude that sexual polymorphism in the study population is herbivore mediated. In addition, we cannot make inferences about the possible evolution from gynodioecy to dioecy in O. robusta because of the need for accurate information concerning the costs of inbreeding, the entire costs of reproduction, the lifetime reproductive success, the estimation of vegetative growth traits, and possible competition for pollinators with other plant species.Sexually dimorphic plants provide an excellent opportunity for examining the differences in the extent of their defense against herbivores because they exhibit sex-related differences in reproductive investment. Such differences enable comparison of the sex with high reproduction expenses with the sex that expends less. The more costly sex is usually also better defended against herbivores. Generally, females are considered more valuable than hermaphrodites in terms of fitness; however, hermaphrodites are more valuable if they can produce seed by autonomous selfing, provided that the inbreeding depression is low and pollen is limited. We studied a gynodioecious population of Opuntia robusta from Central- Eastern Mexico, which has been reported to be trioecious, dioecious, or hermaphrodite, and addressed the following questions: 1) Is the hermaphrodite’s reproductive output higher than the female’s, and are hermaphrodites thus better defended? 2) Are plant tissues differentially defended? 3) Do trade-offs exist among different physical defense traits? and 4) among physical and chemical defense traits? We found that 1) hermaphrodites had a higher seed output and more spines per areola than females and that their spines contained less moisture. Non-reproductive hermaphrodite cladodes contained more total phenolic compounds (TPCs) than female ones. In addition, 2) hermaphrodite reproductive cladodes bore more spines than female cladodes, and 3) and 4) we found a negative relationship between spine number per areola and areola number per cladode and a positive relationship between spine number per areola per plant and TPC concentration per plant. Non-reproductive hermaphrodite cladodes contained a higher concentration of TPCs than female cladodes, and parental cladodes contained fewer TPCs than both reproductive and empty cladodes.UAEM project 2823/2009U CONACyT project 180694/201

    Chemical and physical defense traits in two sexual forms of opuntia robusta in Central Eastern Mexico

    Get PDF
    Sexually dimorphic plants provide an excellent opportunity for examining the differences in the extent of their defense against herbivores because they exhibit sex-related differences in reproductive investment. Such differences enable comparison of the sex with high reproduction expenses with the sex that expends less. The more costly sex is usually also better defended against herbivores. Generally, females are considered more valuable than hermaphrodites in terms of fitness; however, hermaphrodites are more valuable if they can produce seed by autonomous selfing, provided that the inbreeding depression is low and pollen is limited. We studied a gynodioecious population of Opuntia robusta from Central-Eastern Mexico, which has been reported to be trioecious, dioecious, or hermaphrodite, and addressed the following questions: 1) Is the hermaphrodite's reproductive output higher than the female's, and are hermaphrodites thus better defended? 2) Are plant tissues differentially defended? 3) Do trade-offs exist among different physical defense traits? and 4) among physical and chemical defense traits? We found that 1) hermaphrodites had a higher seed output and more spines per areola than females and that their spines contained less moisture. Non-reproductive hermaphrodite cladodes contained more total phenolic compounds (TPCs) than female ones. In addition, 2) hermaphrodite reproductive cladodes bore more spines than female cladodes, and 3) and 4) we found a negative relationship between spine number per areola and areola number per cladode and a positive relationship between spine number per areola per plant and TPC concentration per plant. Non-reproductive hermaphrodite cladodes contained a higher concentration of TPCs than female cladodes, and parental cladodes contained fewer TPCs than both reproductive and empty cladodes

    Past thermal conditions affect hunting behaviour in larval antlions

    Get PDF
    Some sit-and-wait predators, such as antlion larvae, construct traps to capture passing prey. The location of these traps depends on many abiotic and biotic factors, including temperature and the presence of conspecifics, which probably stimulate behaviours that minimize the costs and maximize the benefits of trap building. Here, we exposed second instar antlion larvae to elevated temperatures of 25°C (mild treatment) or 31°C (harsh treatment) for one month and then transferred them to common conditions (20°C) to examine the effects of previous thermal treatment on aggregation tendency and trap size. We predicted that antlions that experienced harsh conditions would subsequently increase the neighbouring distance and trap diameter to reduce competition with conspecifics and improve prey capture success, compensating for past conditions. In contrast with these predictions, antlions exposed to harsh conditions displayed a trend in the opposite direction, towards the decreased neighbouring distance. Furthermore, some of these antlions also built smaller traps. We discuss possible reasons for our results. The effects of previous thermal exposure have rarely been considered in terms of trap construction in antlions. Described effects may possibly apply to other sit-and-wait predators and are significant considering that many of these predators are long-lived

    Does seed size mediate sex-specific reproduction costs in the Callosobruchus maculatus bean beetle?

    No full text
    There is a trade-off between reproductive effort and adult longevity, and when resource allocation is taken into account, it is especially pronounced in species that have aphagous adult forms. This trade-off may be further complicated by environmental factors such as nutrient availability during larval development and by the other sex, which influences the costs of reproduction due to the presentation of nuptial gifts. Here, we examined the influence of larval nutrient quantity on the sex-specific longevity costs of reproduction in the gift-giving seed beetle Callosobruchus maculatus. We found no indication that differences in the nutrient quality of larger and smaller host seeds influence survival in virgin and reproducing individuals or nuptial gift size in reproducing individuals. However, in the case of reproducing individuals, the effect of seed size on survival was statistically marginal. Therefore, we advise taking this into account when investigating reproductive efforts in this species. We have also observed interesting interactions between male and female reproductive costs. While females had generally higher mortality than males, nuptial gifts resulted in lowered female mortality and increased male mortality. Additionally, we found a possibly non-linear relationship between nuptial gift size and the offspring production rate of female recipients

    Hypoxia causes woodlice (Porcellio scaber) to select lower temperatures and impairs their thermal performance and heat tolerance.

    Get PDF
    Environmental temperatures and oxygen availability are important for the balance between oxygen supply and demand. Terrestrial organisms are generally perceived to be less limited by access to oxygen than their aquatic counterparts. Nevertheless, even terrestrial environments can be deficient in oxygen, especially for organisms occurring in soil, litter, wood, rotten fruit or at high elevations. While isopods are the best adapted to a terrestrial lifestyle among crustaceans, many species, including woodlice, occupy environmental gradients of temperature and oxygen. To investigate whether mismatches between oxygen supply and demand can result in a loss of performance in a terrestrial organism, we studied the effects of atmospheric oxygen concentration on the thermal performance of the common rough woodlouse (Porcellio scaber). We compared the thermal preference, thermal sensitivity of running speed, and tolerance to extreme temperatures of woodlice exposed to one of two oxygen concentrations (21% - normoxia, 7% - hypoxia). Under hypoxia, P. scaber preferred microhabitats with temperatures that were on average 3°C lower than those preferred under normoxia. The running speed tended to reach its maximum at a lower temperature under hypoxia than under normoxia (25.13°C vs 28.87°C, respectively, although p was equal to 0.09), and normoxic woodlice ran approximately 1.5-fold faster than hypoxic woodlice at the point of maximum speed. Heat tolerance was significantly lower under hypoxia (38.9°C) than under normoxia (40.7°C), but there was no difference in cold tolerance (5.81°C under normoxia and 5.44°C under hypoxia). Overall, our results indicate that environmental gradients of temperature and oxygen may shape the physiological performance of terrestrial ectotherms, likely via their effects on the balance between oxygen supply and demand, which may have fitness consequences for these organisms in nature

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Systemic changes in cell size throughout the body of Drosophila melanogaster associated with mutations in molecular cell cycle regulators

    Get PDF
    Abstract Along with different life strategies, organisms have evolved dramatic cellular composition differences. Understanding the molecular basis and fitness effects of these differences is key to elucidating the fundamental characteristics of life. TOR/insulin pathways are key regulators of cell size, but whether their activity determines cell size in a systemic or tissue-specific manner awaits exploration. To that end, we measured cells in four tissues in genetically modified Drosophila melanogaster (rictor Δ2 and Mnt 1 ) and corresponding controls. While rictor Δ2 flies lacked the Rictor protein in TOR complex 2, downregulating the functions of this element in TOR/insulin pathways, Mnt 1 flies lacked the transcriptional regulator protein Mnt, weakening the suppression of downstream signalling from TOR/insulin pathways. rictor Δ2 flies had smaller epidermal (leg and wing) and ommatidial cells and Mnt 1 flies had larger cells in these tissues than the controls. Females had consistently larger cells than males in the three tissue types. In contrast, dorsal longitudinal flight muscle cells (measured only in males) were not altered by mutations. We suggest that mutations in cell cycle control pathways drive the evolution of systemic changes in cell size throughout the body, but additional mechanisms shape the cellular composition of some tissues independent of these mutations
    corecore