831 research outputs found

    High-Field Low-Frequency Spin Dynamics

    Full text link
    The theory of exchange symmetry of spin ordered states is extended to the case of high magnetic field. Low frequency spin dynamics equation for quasi-goldstone mode is derived for two cases of collinear and noncollinear antiferromagnets.Comment: 2 page

    Spectroscopy of SMC Wolf-Rayet Stars Suggests that Wind-Clumping does not Depend on Ambient Metallicity

    Get PDF
    The mass-loss rates of hot, massive, luminous stars are considered a decisive parameter in shaping the evolutionary tracks of such stars and influencing the interstellar medium on galactic scales. The small-scale structures (clumps) omnipresent in such winds may reduce empirical estimates of mass-loss rates by an evolutionarily significant factor of >=3. So far, there has been no direct observational evidence that wind-clumping may persist at the same level in environments with a low ambient metallicity, where the wind-driving opacity is reduced. Here we report the results of time-resolved spectroscopy of three presumably single Population I Wolf-Rayet stars in the Small Magellanic Cloud, where the ambient metallicity is ~1/5 Z_Sun.We detect numerous small-scale emission peaks moving outwards in the accelerating parts of the stellar winds.The general properties of the moving features, such as their velocity dispersions,emissivities and average accelerations, closely match the corresponding characteristics of small-scale inhomogeneities in the winds of Galactic Wolf-Rayet stars.Comment: 9 pages, 3 figures; accepted by ApJ Letter

    Properties of WNh stars in the Small Magellanic Cloud: evidence for homogeneous evolution

    Full text link
    We derive the physical properties of three WNh stars in the SMC to constrain stellar evolution beyond the main sequence at low metallicity and to investigate the metallicity dependence of the clumping properties of massive stars. We compute atmosphere models to derive the stellar and wind properties of the three WNh targets. A FUV/UV/optical/near-infrared analysis gives access to temperatures, luminosities, mass loss rates, terminal velocities and stellar abundances. All stars still have a large hydrogen mass fraction in their atmosphere, and show clear signs of CNO processing in their surface abundances. One of the targets can be accounted for by normal stellar evolution. It is a star with initial mass around 40-50 Msun in, or close to, the core He burning phase. The other two objects must follow a peculiar evolution, governed by fast rotation. In particular, one object is likely evolving homogeneously due to its position blue-ward of the main sequence and its high H mass fraction. The clumping factor of one star is found to be 0.15+/-0.05. This is comparable to values found for Galactic Wolf-Rayet stars, indicating that within the uncertainties, the clumping factor does not seem to depend on metallicity.Comment: 16 pages. A&A accepte

    Is the CPT-norm always positive?

    Full text link
    We give an explicit example of an exactly solvable PT-symmetric Hamiltonian with the unbroken PT symmetry which has one eigenfunction with the zero PT-norm. The set of its eigenfunctions is not complete in corresponding Hilbert space and it is non-diagonalizable. In the case of a regular Sturm-Liouville problem any diagonalizable PT-symmetric Hamiltonian with the unbroken PT symmetry has a complete set of positive CPT-normalazable eigenfunctions. For non-diagonalizable Hamiltonians a complete set of CPT-normalazable functions is possible but the functions belonging to the root subspace corresponding to multiple zeros of the characteristic determinant are not eigenfunctions of the Hamiltonian anymore

    Octupolar order in the multiple spin exchange model on a triangular lattice

    Full text link
    We show how a gapless spin liquid with hidden octupolar order arises in an applied magnetic field, in a model applicable to thin films of 3He with competing ferromagnetic and antiferromagnetic (cyclic) exchange interactions. Evidence is also presented for nematic -- i.e., quadrupolar -- correlations bordering on ferromagnetism in the absence of a magnetic field.Comment: 4 pages, 5 figure

    Transfer matrix solution of the Wako-Sait\^o-Mu\~noz-Eaton model augmented by arbitrary short range interactions

    Full text link
    The Wako-Sait{\^o}-Mu\~noz-Eaton (WSME) model, initially introduced in the theory of protein folding, has also been used in modeling the RNA folding and some epitaxial phenomena. The advantage of this model is that it admits exact solution in the general inhomogeneous case (Bruscolini and Pelizzola, 2002) which facilitates the study of realistic systems. However, a shortcoming of the model is that it accounts only for interactions within continuous stretches of native bonds or atomic chains while neglecting interstretch (interchain) interactions. But due to the biopolymer (atomic chain) flexibility, the monomers (atoms) separated by several non-native bonds along the sequence can become closely spaced. This produces their strong interaction. The inclusion of non-WSME interactions into the model makes the model more realistic and improves its performance. In this study we add arbitrary interactions of finite range and solve the new model by means of the transfer matrix technique. We can therefore exactly account for the interactions which in proteomics are classified as medium- and moderately long-range ones.Comment: 15 pages, 2 figure

    A 10-hour period revealed in optical spectra of the highly variable WN8 Wolf-Rayet star WR 123

    Full text link
    Aims. What is the origin of the large-amplitude variability in Wolf-Rayet WN8 stars in general and WR123 in particular? A dedicated spectroscopic campaign targets the ten-hour period previously found in the high-precision photometric data obtained by the MOST satellite. Methods. In June-August 2003 we obtained a series of high signal-to-noise, mid-resolution spectra from several sites in the {\lambda}{\lambda} 4000 - 6940 A^{\circ} domain. We also followed the star with occasional broadband (Johnson V) photometry. The acquired spectroscopy allowed a detailed study of spectral variability on timescales from \sim 5 minutes to months. Results. We find that all observed spectral lines of a given chemical element tend to show similar variations and that there is a good correlation between the lines of different elements, without any significant time delays, save the strong absorption components of the Hei lines, which tend to vary differently from the emission parts. We find a single sustained periodicity, P \sim 9.8 h, which is likely related to the relatively stable pulsations found in MOST photometry obtained one year later. In addition, seemingly stochastic, large-amplitude variations are also seen in all spectral lines on timescales of several hours to several days.Comment: 6 pages, 4 figures, 2 tables, data available on-line, accepted in A&A Research Note

    The massive eclipsing LMC Wolf-Rayet binary BAT99-129. 1 Orbital parameters, hydrogen content and spectroscopic characteristics

    Full text link
    BAT99-129 in the LMC is one among a handful of extra-galactic eclipsing Wolf-Rayet binaries known. We present blue, medium-resolution, phase-dependent NTT-EMMI spectra of this system that allow us to separate the spectra of the two components of the binary and to obtain a reliable orbital solution for both stars. We assign an O5V spectral type to the companion, and WN3(h)a to the Wolf-Rayet component. We discuss the spectroscopic characteristics of the system: luminosity ratio, radii, rotation velocities. We find a possible oversynchronous rotation velocity for the O star. Surprisingly, the extracted Wolf-Rayet spectrum clearly shows the presence of blueshifted absorption lines, similar to what has been found in all single hot WN stars in the SMC and some in the LMC. We also discuss the presence of such intrinsic lines in the context of hydrogen in SMC and LMC Wolf-Rayet stars, WR+O binary evolution and GRB progenitors. Altogether, BAT99~129 is the extragalactic counterpart of the well-known Galactic WR binary V444 Cygni.Comment: 14 pages, 9 figures, accepted by A&A for publicatio
    corecore