The Wako-Sait{\^o}-Mu\~noz-Eaton (WSME) model, initially introduced in the
theory of protein folding, has also been used in modeling the RNA folding and
some epitaxial phenomena. The advantage of this model is that it admits exact
solution in the general inhomogeneous case (Bruscolini and Pelizzola, 2002)
which facilitates the study of realistic systems. However, a shortcoming of the
model is that it accounts only for interactions within continuous stretches of
native bonds or atomic chains while neglecting interstretch (interchain)
interactions. But due to the biopolymer (atomic chain) flexibility, the
monomers (atoms) separated by several non-native bonds along the sequence can
become closely spaced. This produces their strong interaction. The inclusion of
non-WSME interactions into the model makes the model more realistic and
improves its performance. In this study we add arbitrary interactions of finite
range and solve the new model by means of the transfer matrix technique. We can
therefore exactly account for the interactions which in proteomics are
classified as medium- and moderately long-range ones.Comment: 15 pages, 2 figure