51 research outputs found

    Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts

    Get PDF
    Bone infections are difficult to treat and can lead to severe tissue destruction. Acute bone infections are usually caused by Staphylococcus aureus. Osteoclasts, which belong to the monocyte/macrophage lineage, are the key cells in bone infections. They are not well equipped for killing bacteria and may serve as a reservoir for bacterial pathogens. Silver has been known for centuries for its bactericidal activity. Here, we investigated the bactericidal effects of nano-silver particles in bacteria infected human osteoclasts. We found that nano-silver in per se non-toxic concentration enhanced the bactericidal activity in osteoclasts against intracellular Methicillin-resistant, virulent Staphylococcus aureus. The reduced bacterial survival in nano-silver pretreated cells correlated with increased reactive oxygen responses towards the invading pathogens. Overall, these results indicate that nano-silver compounds should be considered as an effective treatment and prevention option for bacterial bone and orthopedic implant infections

    Breakaway oxidation of austenitic stainless steels induced by alloyed sulphur

    Get PDF
    This work focuses on the effect of alloyed sulphur as MnS inclusions in austenitic stainless steels. AISI 304L and AISI 303 were oxidized at 1000 °C in synthetic air. The high sulphur grade, AISI 303, presents a breakaway oxidation with formation of nodules with an inner part composed of alternated layers of Fe-rich and Cr-rich oxides. During oxidation, MnS inclusions near the metal/oxide interface are partially dissociated. Manganese is incorporated in the oxide. The sulphur is trapped in Cr,Mn-oxysulphide aggregates which formation leads to a local decrease of the Cr concentration and consequently to the formation of non-protective Fe-rich oxide

    Validation of Effective Extracellular Vesicles Isolation Methods Adapted to Field Studies in Malaria Endemic Regions.

    Get PDF
    Malaria affects the poorer regions of the world and is of tremendous health and economic burden for developing countries. Extracellular vesicles (EVs) are small vesicles released by almost any cells in the human body, including malaria infected red blood cells. Recent evidence shows that EVs might contribute to the pathogenesis of malaria. In addition, EVs hold considerable value in biomarker discovery. However, there are still significant gaps in our understanding of EV biology. So far most of our knowledge about EVs in malaria comes from in vitro work. More field studies are required to gain insight into their contribution to the disease and pathogenesis under physiological conditions. However, to perform research on EVs in low-income regions might be challenging due to the lack of appropriate equipment to isolate EVs. Therefore, there is a need to develop and validate EV extraction protocols applicable to poorly equipped laboratories. We established and validated two protocols for EV isolation from cell culture supernatants, rodent and human plasma. We compared polyethylene glycol (PEG) and salting out (SA) with sodium acetate for precipitation of EVs. We then characterized the EVs by Transmission Electron Microscopy (TEM), Western Blot, Size-exclusion chromatography (SEC), bead-based flow cytometry and protein quantification. Both protocols resulted in efficient purification of EVs without the need of expensive material or ultracentrifugation. Furthermore, the procedure is easily scalable to work with large and small sample volumes. Here, we propose that both of our approaches can be used in resource limited countries, therefore further helping to close the gap in knowledge of EVs during malaria

    Altered drug susceptibility during host adaptation of a <i>Plasmodium falciparum</i> strain in a non-human primate model

    Get PDF
    Infections with Plasmodium falciparum, the most pathogenic of the Plasmodium species affecting man, have been reduced in part due to artemisinin-based combination therapies. However, artemisinin resistant parasites have recently emerged in South-East Asia. Novel intervention strategies are therefore urgently needed to maintain the current momentum for control and elimination of this disease. In the present study we characterize the phenotypic and genetic properties of the multi drug resistant (MDR) P. falciparum Thai C2A parasite strain in the non-human Aotus primate model, and across multiple passages. Aotus infections with C2A failed to clear upon oral artesunate and mefloquine treatment alone or in combination, and ex vivo drug assays demonstrated reduction in drug susceptibility profiles in later Aotus passages. Further analysis revealed mutations in the pfcrt and pfdhfr loci and increased parasite multiplication rate (PMR) across passages, despite elevated pfmdr1 copy number. Altogether our experiments suggest alterations in parasite population structure and increased fitness during Aotus adaptation. We also present data of early treatment failures with an oral artemisinin combination therapy in a pre-artemisinin resistant P. falciparum Thai isolate in this animal model

    Malaria infected red blood cells release small regulatory RNAs through extracellular vesicles

    Get PDF
    The parasite Plasmodium falciparum causes the most severe form of malaria. Cell communication between parasites is an important mechanism to control population density and differentiation. The infected red blood cells (iRBCs) release small extracellular vesicles (EVs) that transfer cargoes between cells. The EVs synchronize the differentiation of the asexual parasites into gametocytes to initiate the transmission to the mosquito. Beside their role in parasite communication, EVs regulate vascular function. So far, the exact cargoes responsible for cellular communication remain unknown. We isolated EVs from cultured iRBCs to determine their small RNA content. We identified several types of human and plasmodial regulatory RNAs. While the miRNAs and tRNA-derived fragments were the most abundant human RNAs, we also found Y-RNAs, vault RNAs, snoRNAs and piRNAs. Interestingly, we found about 120 plasmodial RNAs, including mRNAs coding for exported proteins and proteins involved in drug resistance, as well as non-coding RNAs, such as rRNAs, small nuclear (snRNAs) and tRNAs. These data show, that iRBC-EVs carry small regulatory RNAs. A role in cellular communication is possible since the RNAs were transferred to endothelial cells. Furthermore, the presence of Plasmodium RNAs, in EVs suggests that they may be used as biomarker to track and detect disease

    Evaluation of extracellular vesicle function during malaria infection

    Get PDF
    Malaria is a life-threatening disease caused by Plasmodium parasites, with P. falciparum being the most prevalent on the African continent and responsible for most malaria-related deaths globally. Several factors including parasite sequestration in tissues, vascular dysfunction, and inflammatory responses influence the evolution of the disease in malaria-infected people. P. falciparum-infected red blood cells (iRBCs) release small extracellular vesicles (EVs) containing different kinds of cargo molecules that mediate pathogenesis and cellular communication between parasites and host. EVs are efficiently taken up by cells in which they modulate their function. Here we discuss strategies to address the role of EVs in parasite-host interactions. First, we describe a straightforward method for labeling and tracking EV internalization by endothelial cells, using a green cell linker dye. Second, we report a simple way to measure permeability across an endothelial cell monolayer by using a fluorescently labeled dextran. Finally, we show how to investigate the role of small non-coding RNA molecules in endothelial cell function

    Epstein-Barr virus and malaria upregulate AID and APOBEC3 enzymes, but only AID seems to play a major mutagenic role in Burkitt lymphoma

    Full text link
    Endemic Burkitt lymphoma (eBL) is characterized by an oncogenic IGH/c-MYC translocation and Epstein-Barr virus (EBV) positivity, and is epidemiologically linked to Plasmodium falciparum malaria. Both EBV and malaria are thought to contribute to eBL by inducing the expression of activation-induced cytidine deaminase (AID), an enzyme involved in the IGH/c-MYC translocation. AID/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) family enzymes have recently emerged as potent mutagenic sources in a variety of cancers, but apart from AID, their involvement in eBL and their regulation by EBV and P. falciparum is unknown. Here, we show that upon inoculation with EBV, human B cells strongly upregulate the expression of enzymatically active APOBEC3B and APOBEC3G. In addition, we found significantly increased levels of APOBEC3A in B cells of malaria patients, which correlated with parasite load. Interestingly, despite the fact that APOBEC3A, APOBEC3B, and APOBEC3G caused c-MYC mutations when overexpressed in HEK293T cells, a mutational enrichment in eBL tumors was only detected in AID motifs. This suggests that even though the EBV- and P. falciparum-directed immune response triggers the expression and activity of several AID/APOBEC members, only the upregulation of AID has oncogenic consequences, while the induction of the APOBEC3 subfamily may primarily have immunoprotective functions

    Hemozoin-catalyzed precipitation polymerization as an assay for malaria diagnosis

    Get PDF
    Methods to diagnose malaria are of paramount interest to eradicate the disease. Current methods have severe limitations, as they are either costly or not sensitive enough to detect low levels of parasitemia. Here we report an ultrasensitive, yet low-resource chemical assay for the detection and quantification of hemozoin, a biomarker of all Plasmodium species. Solubilized hemozoin catalyzes the atom transfer radical polymerization of N-isopropylacrylamide above the lower critical solution temperature of poly(N-isopropylacrylamide). The solution becomes turbid, which can be observed by naked eye and quantified by UV-visible spectroscopy. The rate of turbidity increase is proportional to the concentration of hemozoin, with a detection limit of 0.85 ng mL −1 . Malaria parasites in human blood can be detected down to 10 infected red blood cells μL −1 . The assay could potentially be applied as a point-of-care test. The signal-amplification of an analyte by biocatalytic precipitation polymerization represents a powerful approach in biosensing

    Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum

    Get PDF
    SummaryDuring its life cycle, Plasmodium falciparum undergoes rapid proliferation fueled by de novo synthesis and acquisition of host cell lipids. Consistent with this essential role, Plasmodium lipid synthesis enzymes are emerging as potential drug targets. To explore their broader potential for therapeutic interventions, we assayed the global lipid landscape during P. falciparum sexual and asexual blood stage (ABS) development. Using liquid chromatography-mass spectrometry, we analyzed 304 lipids constituting 24 classes in ABS parasites, infected red blood cell (RBC)-derived microvesicles, gametocytes, and uninfected RBCs. Ten lipid classes were previously uncharacterized in P. falciparum, and 70%–75% of the lipid classes exhibited changes in abundance during ABS and gametocyte development. Utilizing compounds that target lipid metabolism, we affirmed the essentiality of major classes, including triacylglycerols. These studies highlight the interplay between host and parasite lipid metabolism and provide a comprehensive analysis of P. falciparum lipids with candidate pathways for drug discovery efforts
    corecore