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Abstract

Bone infections are difficult to treat and can lead to severe tissue destruction. Acute bone infections are usually caused by Staphylococcus
aureus. Osteoclasts, which belong to the monocyte/macrophage lineage, are the key cells in bone infections. They are not well equipped for
killing bacteria and may serve as a reservoir for bacterial pathogens. Silver has been known for centuries for its bactericidal activity. Here, we
investigated the bactericidal effects of nano-silver particles in bacteria infected human osteoclasts. We found that nano-silver in per se non-
toxic concentration enhanced the bactericidal activity in osteoclasts against intracellular Methicillin-resistant, virulent Staphylococcus
aureus. The reduced bacterial survival in nano-silver pretreated cells correlated with increased reactive oxygen responses towards the
invading pathogens. Overall, these results indicate that nano-silver compounds should be considered as an effective treatment and prevention
option for bacterial bone and orthopedic implant infections.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
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Bone and orthopedic implant infections are caused by
microorganisms and are generally associated with highly inflam-
matory processes leading to bone destruction and implant loss.1,2

Acute bone infections are predominantly caused by Staphylococcus
aureus.3 Conservative treatments of bone infectionswith antibiotics
offer poor results when not combined with debridement.1,4

Silver has been used throughout the ages for its antimicrobial
activities.5 Especially the use of orthopedic implant with
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nanoparticulate silver coatings was intensively investigated.6–8

The problem is that silver nanoparticles (Ag-NP) at antibacterial
concentrations have been reported to be cytotoxic against bone
cells in vitro.9

The rationale for the present study was to investigate
biological effects on human monocyte derived cells mediated
by Ag-NP that are independent of directly exerted cytotoxicity.
Our study demonstrates for the first time that Ag-NP induces a
strong bactericidal activity against problematic pathogens in
human osteoclasts that is potentially mediated by increased
radical oxygen responses (ROS) independently of direct silver
toxicity.
Methods

In vitro generation of human macrophages and osteoclasts

Human osteoclasts and macrophages were generated as
described.10 For the differentiation of monocytes towards
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Figure 1. Viability of the host cells after treatment with Ag-NP of various sizes. Osteoclasts and macrophages were treated with Ag-NP of indicated size for 4
hours. Cell viability was assessed by the fluorescence release from BCECF pre-labeled cells (A) or by the release of lactate dehydrogenase, LDH (B). In A, the
average +/− SEM is indicated. In B, bars represent average +/− SEM normalized to untreated cells.
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osteoclasts RANK-L (10 μg/ml) and M-CSF (10 ng/ml; both
Miltenyi) was applied.

Generation of pro-inflammatory primed supernatant

Human macrophages were infected with Salmonella
typhimurium strain SL1344. The primed supernatant was cleared
by centrifugation and filtration.

Ag‐Np treatment, bacterial infection and colony forming unit
assays (CFU)

Cells were seeded in 24-well plates overnight. For indicated
experiments, the medium was supplemented with primed
supernatant (at 1:10 dilution) or with 2.5 ng/ml interferon-γ
(Miltenyi). Cells were treated with nano-silver particles (80 nm,
NanoComposix) at 10 μg/ml for 4 hours and then infected with
E. coli (BL21) at a multiplicity of infection (MOI) of 10 or with
MRSA S. aureus (USA300) at a MOI of 1. At indicated times,
samples were hypotonically lysed and spread on LB-Agar plates.

Assessing cell viability in BCEFCF fluorescence and LDH
release assays

Fluorescence release assays using BCEFCF-AM (Sigma)
were performed according to11 and LDH release was measured
according to manufacturer's recommendations (Roche).
Phagocytosis

E. coli (Alexa Fluor® 488 conjugate; Fisher Scientific) as
well as CFSE (Sigma) labeled S. aureus were used to determine
the phagocytosis of bacteria by flow cytometry and confocal
microscopy.

ROS measurements

ROS responses to bacteria were measured using Ampliflu™
Red according to manufacturer's recommendations (Sigma).
Results

Consistent with earlier studies,9,12 we found significant cell
damage in fluorescence (Figure 1, A) and LDH release (Figure 1,
B) assays induced by Ag-NP in a size-dependent manner.
Smaller particles were more toxic than particles of larger size.
80-nm particles exerted no nanotoxicity at concentrations of
12.5 μg/ml and below. All subsequent experiments were
performed with 80-nm particles at a concentration of 10 μg/ml.

Intracellular, non-virulent E. coli multiplied in untreated
osteoclasts (Figure 2, A, left panel). Ag-NP treatment enabled the
osteoclasts to significantly reduce viable bacteria. Macrophages,
known antibacterial effector cells, were able to efficiently reduce
viable E. coli load without Ag-NP pretreatment. However, we
found an even further reduced bacterial load in Ag-NP



A

B

Figure 2. Viability of intracellular and extracellular E. coli after Ag-NP treatment. Cells were challenged with 10 MOI E. coli Bl21 after Ag-NP treatment.
Intracellular bacteria load was enumerated in CFU assays. CFU counts were normalized to the 1-hour postinfection time point to focus on intracellular survival
and to diminish interexperimental differences of the raw CFU counts (see also Figure S1). In B, extracellular bacteria were grown in presence +/− Ag-NP to
determine silver toxicity.
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pre-treated macrophages Ag-NP treatment at the earlier postinfec-
tion time point suggesting a more rapid response in Ag-pretreated
cells as compared to control-treated cells (Figure 2, B right panel;
compare Figure S1). Extracellular E. coli grew unaffected in the
presence of Ag-NP at chosen concentration and size (Figure 2, B).

Consistent with recent reports,13 in cells without previous
pro-inflammatory activation intracellular virulent, drug-resistant
S. aureus expanded unimpaired as compared to extracellular
growth (Figure 3, A and B). S. aureus also grew in osteoclasts,
activated by the addition of pro-inflammatory primed superna-
tant (Figure 3, C and D) or interferon-γ (IFN-γ; Figure 3, E).
However, the pretreatment with Ag-NP enabled activated
osteoclasts to efficiently kill intracellular virulent S. aureus.
Pro-inflammatory activated macrophages were able to eliminate
engulfed S. aureus (Figure 3, C and E) that was further reduced
by Ag-NP (p = 0.057).
Silver pre-incubation neither altered the uptake of E. coli
(Figs. 4, A and B; see also Figure S1) nor the intracellular
engulfment of S. aureus (Figure 4, C) in osteoclast or
macrophages.

Silver pre-incubation enhanced ROS responses in osteoclasts
towards both S. aureus and E. coli challenge (Figure 5).
Generally, we found higher ROS responses in macrophages,
consistent with the CFU assays.
Discussion

Osteoclasts have a crucial role in the pathogenesis of
bone infections. Being capable of phagocytizing bacteria and
not properly armed to kill them, they serve as a bacterial
reservoir.14
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Figure 3. Viability of S. aureus in activated cells after Ag-NP incubation. Cells were treated with Ag-NP and were then infected with S. aureus MRSA. CFU
assays from not previously activated cells are shown in A, from cells activated by the addition of primed supernatant are demonstrated in C, and from IFN-γ
activated cells are indicated in E. Extracellular bacteria are shown in B. TNF-α levels, measured by ELISA, after addition of primed supernatant to the growth
medium is demonstrated in D.
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Figure 4. Ag-NP do not interfere with bacterial uptake. Cells were treated with Ag-NP before challenge with green fluorescent E. coli or S. aureus before fixation
and preparation for flow cytometry (A and B) or confocal microscopy (C). In B, averages +/− SEM are shown. In C, the cells were counterstained with
phalloidin-AF594 (actin cytoskeleton in red) and DAPI (blue nuclear stain) to indicate cell dimensions and nucleus. Maximum intensity projections (left images)
and 2 distinct focal planes within the infected host cells (see cartoon) are shown.
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Figure 5. AG-NP increase ROS responses towards bacteria in osteoclasts. Cells were treated with Ag-NP before challenge with live S. aureus or E. coli. ROS
were detected using Ampliflu. Kinetic readings of representative experiments are shown in A. In B, averages +/− SEM at the 150-second time point are
presented.
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The major finding of this study was that Ag-NP treatment, at a
non-toxic concentration, significantly enhanced bactericidal
activity against both non-virulent E. coli and virulent,
multi-drug resistant S. aureus. Previous activation of the cells
in a pro-inflammatory environment was necessary for efficient
elimination of S. aureus. Such a pro-inflammatory environment
is found also in vivo during the pathogenesis of hematogenous
bone infection as bacteremia is often a prerequisite for the
disease.

Macrophages, as functional antibacterial effector cells, were
used as a control population.15 However, not previously
activated macrophages, were not capable of controlling the
growth of virulent S. aureus. S. aureus, especially
community-acquired strains, evolved an impressive tool set to
survive in professional phagocytes.16 However, polarizing the
macrophages towards a M1 phenotype enabled the cells to kill
engulfed S. aureus. Consistent with the previous literature,17

activation with pro-inflammatory primed supernatant was more
efficient than activation with IFN-γ alone.

Importantly, AG-NP treatment did not impair bacteria uptake.
Instead, we found elevated ROS responses in Ag-NP treated
osteoclasts. A recent study demonstrated that osteoclast
precursors potently kill bacteria in a ROS-dependent manner,
especially in pro-inflammatory environment via the activation of
Toll-like receptor 4. Further differentiation into mature osteo-
clasts diminished this bactericidal activity.18 Ag-NP treatment,
in addition to pro-inflammatory activation, might reactivate the
antibacterial function still present in osteoclast precursors.
Conclusion

Research demonstrated toxicity of Ag-NP when used at
bactericidal concentrations.9 As such, they are not widely used in
clinic. Here we demonstrate that Ag-NP induce bactericidal
activity and ROS generation in osteoclasts independently of
direct silver toxicity, which renders silver compounds excellent
candidates for a rational therapy design.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.nano.2017.11.006.
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