72 research outputs found
Four decades of European geomagnetic secular variation and acceleration
Geomagnetic secular variation, the generally slow, continuous change in the core magnetic field, is characterized by occasional rapid variations known as geomagnetic jerks. Recent studies on magnetic data obtained by satellites with a good global coverage suggest that more rapid and smaller scale features than previously thought occur in the field change. We have taken advantage of the comparatively high density of geomagnetic observatories in Europe and have derived a regional model for the detailed study of secular variation and acceleration over the past four decades from 1960 to 2001 by means of improved and regularized spherical cap harmonic analysis. We show the improvements to our regional model over a global model. All the known jerks are seen in our model, but further times with rapid changes in secular variation exist. Moreover, times of zero acceleration in general do not occur simultaneously in all magnetic field components, although this nearly is the case in 1969.6 and 1982.2. Secular variation and acceleration show very dynamic patterns indicating rapid and complex causal processes in the Earth’s fluid core.
Unmodelled magnetic contributions in satellite-based models
Additional file 6: Figure C4. Structure of the dependence of Swarm C dX residuals on IMF B y and B z according to the different IMF polarity sectors. Colour scale is given in arbitrary units (a.u.)
Earth's magnetic field in the early 19th century from French sources
International audienceWe present both a description of a new magnetic data set covering predominantly the 18th and 19th centuries and the results derived from it for the small window 1820-1850, from which the bulk of the data originate. The data set comprises measurements of declination taken overwhelmingly on French naval and hydrographic vessels. A list of the vessels is given for one of the data sets. When augmented by extant inclination measurements, the data are capable of resolving the magnetic field at the core-mantle boundary to a high degree of fidelity and thus are a valuable addition to the data set of historical geomagnetic measurements
The French EO high spatial resolution hyperspectral dual mission - an update
More than 25 years of airborne imaging spectroscopy and spaceborne sensors such as Hyperion [1] or HICO [2] have clearly demonstrated the ability of such a remote sensing technique to produce value added information regarding surface composition and physical properties for a large variety of applications [3]. Scheduled missions such as EnMAP [4], HISUI [5] or PRISMA [6] prove the increased interest of the scientific community for such a type of remote sensing data. In France, after gathering a group of Science and Defence users of imaging spectrometry data (Groupe de Synthèse Hyperspectral, GSH [7]) to establish an up-to-date review of possible applications, define instrument specifications required for accurate, quantitative retrieval of diagnostic parameters, and identify fields of application where imaging spectrometry is a major contribution, CNES (French Space Agency) decided a pre-phase A study for an hyperspectral mission concept called HYPXIM (HYPerspectral-X IMagery), the main fields of applications of which were to be vegetation, coastal and inland waters, geosciences, urban environment, atmospheric sciences, cryosphere and Defence. During this pre-phase A, the feasibility of such a platform was evaluated, based on specific studies supported by Defence and a more accurate definition of reference radiances and instrument characteristics. Results also pointed to applications where high spatial resolution was necessary and would not be covered by the other foreseen hyperspectral missions. For example, in the case of ecosystem studies, it is generally agreed that many model variables and processes are not accurately represented and that upcoming sensors with improved spatial and spectral capabilities, such as higher resolution imaging spectrometers, are needed to further improve the quality and accuracy of model variables [8, 9]. The growing interest for urban environment related applications also emphasized the need for an increased spatial resolution [10, 11]. Finally, short revisit time is an issue for security and Defense as well as crisis monitoring. Table 1 summarizes the Science and Defence mission requirements at the end of pre-phase A.
Two instrument designs were proposed by the industry (EADS-Astrium and Thales Alenia Space) based on these new requirements [12]: HYPXIM-Challenging, on a micro-satellite platform, with a 15 m pixel and HYPXIM-Performance, on a mini-satellite platform, with a 8 m pixel, and possible TIR hyperspectral capabilities. Both scenarios included a PAN camera with a 1.85 m pixel. Platform agility would allow for “on-event mode” with a 3-day revisit time. CNES decided to select HYPXIM-Performance, the system providing a higher spatial resolution (pixel ≤ 8 m, [13, 14]), but without TIR capabilities, for a phase A study [15]. This phase A was to start at the beginning of 2013 but is currently stopped due to budget constraints. An important part of the activities has been focusing on getting the French community more involved through various surveys and workshops in preparation for the CNES prospective meeting, an important step for the future of the mission. During this prospective meeting, which took place last March, decision was taken to keep HYPXIM alive as a mid-term (2020-2025) mission. The attendance at the recent workshop organized by the SFPT-GH (Société Française de Photogrammétrie et Télédétection, Groupe Hyperspectral) which gathered more than 90 participants from various field of application, including the industry (see http://www.sfpt.fr/hyperspectral for more details), demonstrates the interest and support of the French scientific community for a high spatial resolution imaging spectrometry mission
International Geomagnetic Reference Field: the 12th generation
The 12th generation of the International Geomagnetic Reference Field (IGRF) was adopted in December 2014 by the Working Group V-MOD appointed by the International Association of Geomagnetism and Aeronomy (IAGA). It updates the previous IGRF generation with a definitive main field model for epoch 2010.0, a main field model for epoch 2015.0, and a linear annual predictive secular variation model for 2015.0-2020.0. Here, we present the equations defining the IGRF model, provide the spherical harmonic coefficients, and provide maps of the magnetic declination, inclination, and total intensity for epoch 2015.0 and their predicted rates of change for 2015.0-2020.0. We also update the magnetic pole positions and discuss briefly the latest changes and possible future trends of the Earth’s magnetic fiel
GRACE—Gravity Data for Understanding the Deep Earth’s Interior
While the main causes of the temporal gravity variations observed by the Gravity Recovery and Climate Experiment (GRACE) space mission result from water mass redistributions occurring at the surface of the Earth in response to climatic and anthropogenic forces (e.g., changes in land hydrology, ocean mass, and mass of glaciers and ice sheets), solid Earth’s mass redistributions were also recorded by these observations. This is the case, in particular, for the glacial isostatic adjustment (GIA) or the viscous response of the mantle to the last deglaciation. However, it has only recently been shown that the gravity data also contain the signature of flows inside the outer core and their effects on the core–mantle boundary (CMB). Detecting deep Earth’s processes in GRACE observations offers an exciting opportunity to provide additional insight into the dynamics of the core–mantle interface. Here, we present one aspect of the GRACEFUL (GRavimetry, mAgnetism and CorE Flow) project, i.e., the possibility to use gravity field data for understanding the dynamic processes inside the fluid core and core–mantle boundary of the Earth, beside that offered by the geomagnetic field variations
Candidate main-field models for producing the 9th generation IGRF
International audienceThis paper presents the various candidate models used in deriving the 9th generation IGRF. Based on notes submitted to the IAGA working group V-MOD with the Gauss coefficients, a brief description of the data used and the method of modelling for each of the candidate models is given. The six candidate models for epoch 1995.0 and the five for epoch 2000.0 are presented. Improvements gained by the new models are also discussed
- …