338 research outputs found

    Deep-image-matching: A toolbox for multiview image matching of complex scenarios

    Get PDF
    Finding corresponding points between images is a fundamental step in photogrammetry and computer vision tasks. Traditionally, image matching has relied on hand-crafted algorithms such as SIFT or ORB. However, these algorithms face challenges when dealing with multi-Temporal images, varying radiometry and contents as well as significant viewpoint differences. Recently, the computer vision community has proposed several deep learning-based approaches that are trained for challenging illumination and wide viewing angle scenarios. However, they suffer from certain limitations, such as rotations, and they are not applicable to high resolution images due to computational constraints. In addition, they are not widely used by the photogrammetric community due to limited integration with standard photogrammetric software packages. To overcome these challenges, this paper introduces Deep-Image-Matching, an opensource toolbox designed to match images using different matching strategies, ranging from traditional hand-crafted to deep-learning methods (https://github.com/3DOM-FBK/deep-image-matching). The toolbox accommodates high-resolution datasets, e.g. data acquired with full-frame or aerial sensors, and addresses known rotation-related problems of the learned features. The toolbox provides image correspondences outcomes that are directly compatible with commercial and open-source software packages, such as COLMAP and openMVG, for a bundle adjustment. The paper includes also a series of cultural heritage case studies that present challenging conditions where traditional hand-crafted approaches typically fail

    Environmental occurrence of the Whipple's disease bacterium (Tropheryma whippelii).

    Get PDF
    Whipple's disease is a systemic disorder in which a gram-positive rod-shaped bacterium is constantly present in infected tissues. After numerous unsuccessful attempts to culture this bacterium, it was eventually characterized by 16S rRNA gene analysis to be a member of the actinomycetes. The name Tropheryma whippelii was proposed. Until now, the bacterium has only been found in infected human tissues, but there is no evidence for human-to-human transmission. Here we report the detection of DNA specific for the Whipple's disease bacterium in 25 of 38 wastewater samples from five different sewage treatment plants in the area of Heidelberg, Germany. These findings provide the first evidence that T. whippelii occurs in the environment, within a polymicrobial community. This is in accordance with the phylogenetic relationship of this bacterium as well as with known epidemiological aspects of Whipple's disease. Our data argue for an environmental source for infection with the Whipple's disease bacterium

    GEO-INFORMATION TECHNOLOGIES FOR A MULTIMODAL ACCESS ON HISTORICAL PHOTOGRAPHS AND MAPS FOR RESEARCH AND COMMUNICATION IN URBAN HISTORY

    Get PDF
    This contribution shows ongoing interdisciplinary research of the project HistStadt4D, concerning the investigation and development of different multimodal access strategies on large image repositories. The first part of the presented research introduces different methods of access, where classical analogue access stands in contrast to digital access strategies such as online collections, Web3D, Augmented Reality (AR) and Virtual Reality (VR). We discuss the main persisting issues of libraries, advantages of digital methods, and different access tools. The second part shows technologies and workflows used to create various access possibilities. The photogrammetric and geo-informational work serves as a technical basis for a 3D WebGIS as well as multiple AR/VR applications, which require spatial oriented images, object coordinates, and further spatial data. We introduce a research environment that allows art historians spatial access to historical photography, integrating 3D/4D models with photographic documents of the respective architecture. For dissemination of research results in installations and museums, we present fully immersive VR as well as handheld AR applications allowing users a free exploration of historical photography in a spatial setting

    Upper critical magnetic field in K0.83Fe1.83Se2 and Eu0.5K0.5Fe2As2 single crystals

    Get PDF
    The H-T phase diagrams of single crystalline electron-doped K0.83Fe1.83Se2 (KFS1), K0.8Fe2Se2 (KFS2) and hole-doped Eu0.5K0.5Fe2As2 (EKFA) have been deduced from tunnel diode oscillator-based contactless measurements in pulsed magnetic fields up to 57 T for the inter-plane (H//c) and in-plane (H//ab) directions. The temperature dependence of the upper critical magnetic field Hc2(T) relevant to EFKA is accounted for by the Pauli model including an anisotropic Pauli paramagnetic contribution (\mu_BHp=114 T for H//ab and 86 T for H//c). This is also the case of KFS1 and KFS2 for H//ab whereas a significant upward curvature, accounted for by a two-gap model, is observed for H//c. Despite the presence of antiferromagnetic lattice order within the superconducting state of the studied compounds, no influence of magnetic ordering on the temperature dependence of Hc2(T) is observed.Comment: 9 pages, 5 figures. arXiv admin note: text overlap with arXiv:1104.561

    Spatially-resolved potential measurement with ion crystals

    Full text link
    We present a method to measure potentials over an extended region using one-dimensional ion crystals in a radio frequency (RF) ion trap. The equilibrium spacings of the ions within the crystal allow the determination of the external forces acting at each point. From this the overall potential, and also potentials due to specific trap features, are calculated. The method can be used to probe potentials near proximal objects in real time, and can be generalized to higher dimensions.Comment: 7 pages (double spaced), 3 figure
    • …
    corecore