210 research outputs found

    Optical and Near-IR Imaging of the Dark Globule CB 52

    Get PDF
    The internal structure of the dark globule CB 52 is investigated by means of broadband imaging in the optical and near-IR spectral range. By exploiting the extinction of the stellar light within this object, we derive observational parameters suitable to infer the internal structure of this cloud. Extinction maps were obtained at different wavelengths by using both stellar counts and two-color diagrams. While in the optical region the extinction is better evaluated at the cloud boundaries, the internal regions are more conveniently probed in the near-IR, so a combined map was derived. The total-to-selective extinction ratio RV was also observed to increase toward the inner regions, and a plot versus the extinction AV suggests that grain growth processes are active in this cloud. The statistical fluctuation of the AV, estimated in the line of sight of the background stars, is investigated by comparing the observed stellar colors with those of the unreddened stars. The dispersion σAV, derived from optical observations, is found to be almost independent of the mean extinction, AV, while by using near-IR data we find a more complex behavior: the σAV versus AV relation increases until AV ~ 6 and then decreases for larger extinctions. This is discussed in the framework of a simple model, suggesting that a clumpy and clustered structure can explain the observations in the inner regions, while outside the cloud the mass distribution remains more homogeneous

    Spitzer-IRAC survey of molecular jets in Vela-D

    Full text link
    We present a survey of H2 jets from young protostars in the Vela-D molecular cloud (VMR-D), based on Spitzer -IRAC data between 3.6 and 8.0 micron. Our search has led to the identification of 15 jets and about 70 well aligned knots within 1.2 squared degree. We compare the IRAC maps with observations of the H2 1-0 S(1) line at 2.12 micron, with a Spitzer-MIPS map at 24 and 70 micron, and with a map of the dust continuum emission at 1.2 mm. We find a association between molecular jets and dust peaks. The jet candidate exciting sources have been searched for in the published catalog of the Young Stellar Objects of VMR-D. We selected all the sources of Class II or earlier which are located close to the jet center and aligned with it.The association between jet and exciting source was validated by estimating the differential extinction between the jet opposite lobes. We are able to find a best-candidate exciting source in all but two jets. Four exciting sources are not (or very barely) observed at wavelengths shorter than 24 micron, suggesting they are very young protostars. Three of them are also associated with the most compact jets. The exciting source Spectral Energy Distributions have been modeled by means of the photometric data between 1.2 micron and 1.2 mm. From SEDs fits we derive the main source parameters, which indicate that most of them are low-mass protostars. A significant correlation is found between the projected jet length and the [24] - [70] color, which is consistent with an evolutionary scenario according to which shorter jets are associated with younger sources. A rough correlation is found between IRAC line cooling and exciting source bolometric luminosity, in agreement with the previous literature. The emerging trend suggests that mass loss and mass accretion are tightly related phenomena and that both decrease with time.Comment: Accepted by The Astrophysical Journa

    The Structure of the Small Dark Cloud CB 107

    Get PDF
    This paper presents the near-IR imaging observations of CB 107, a small dark globule projected against a rich stellar background. By means of accurate photometry, the near-IR two-color diagram J - H versus H - K was obtained for the stellar background. This information was used to estimate the color excesses of the detected stars so that, given the reddening curve, it was possible to derive the extinction map of the cloud. The structural properties of the dark globule were investigated by plotting the extinction dispersion σ, obtained in a given spatial box, as a function of the mean extinction AV. This relationship has shown quite a definite linear behavior, with the slope increasing with the box size. The results of the present analysis, compared with those obtained by other authors on larger dark clouds, suggest that for a given spatial scale the slope of the σ versus AV relation is greater in CB 107 than in larger clouds. The so-called Δ-variance method was also used to investigate the structure of the dark globule by evaluating the drift behavior of its extinction map. In this way, we have found that the power spectrum of the extinction map is characterized by a power law with exponent ÎČ ~ 2.7. This value is lower than expected, for the same range of spatial scales, on the basis of previous work on large molecular clouds

    XMM-Newton observation of MACHO 104.20906.960: a dwarf nova candidate with a 2 h period

    Full text link
    The binaries known as cataclysmic variables are particular binary systems in which the primary star (a white dwarf) accretes material from a secondary via Roche-lobe mechanism. Usually, these objects have orbital period of a few hours so that a detailed temporal analysis can be performed. Here, we present Chandra XMM{\it XMM}-Newton observations of a dwarf nova candidate identified in the past by optical observations towards the galactic Bulge and labeled as MACHO 104.20906.960. After a spectral analysis, we used the Lomb-Scargle technique for the period search and evaluated the confidence level using Monte-Carlo simulations. In this case, we found that the XX-ray source shows a period of 2.03−0.07+0.092.03_{-0.07}^{+0.09} hours (3σ\sigma error) so that it is most likely a system of interacting objects. The modulation of the signal was found with a confidence level of >>99%. The spectrum can be described by a two thermal plasma components with X-ray flux in the 0.3--10 keV energy band of 1.77−0.19+0.16×10−131.77_{-0.19}^{+0.16}\times10^{-13} erg s−1^{-1} cm−2^{-2}. We find that the distance of the source is approximately 1 kpc thus corresponding to a luminosity LX≃2×1031L_{X}\simeq 2\times 10^{31} erg s−1^{-1}.Comment: 2008, in press on New Astronomy, (http://www.elsevier.com/wps/find/journaldescription.cws_home/601274/description#description); XMM-Newton observation of MACHO 104.20906.960: a dwarf nova candidate with a 2 h perio

    The YSO Population in the Vela-D Molecular Cloud

    Get PDF
    We investigate the young stellar population in the Vela Molecular Ridge, Cloud-D (VMR-D), a star forming (SF) region observed by both Spitzer/NASA and Herschel/ESA space telescope. The point source, band-merged, Spitzer-IRAC catalog complemented with MIPS photometry previously obtained is used to search for candidate young stellar objects (YSO), also including sources detected in less than four IRAC bands. Bona fide YSO are selected by using appropriate color-color and color-magnitude criteria aimed to exclude both Galatic and extragalactic contaminants. The derived star formation rate and efficiency are compared with the same quantities characterizing other SF clouds. Additional photometric data, spanning from the near-IR to the submillimeter, are used to evaluate both bolometric luminosity and temperature for 33 YSOs located in a region of the cloud observed by both Spitzer and Herschel. The luminosity-temperature diagram suggests that some of these sources are representative of Class 0 objects with bolometric temperatures below 70 K and luminosities of the order of the solar luminosity. Far IR observations from the Herschel/Hi-GAL key project for a survey of the Galactic plane are also used to obtain a band-merged photometric catalog of Herschel sources aimed to independently search for protostars. We find 122 Herschel cores located on the molecular cloud, 30 of which are protostellar and 92 starless. The global protostellar luminosity function is obtained by merging the Spitzer and Herschel protostars. Considering that 10 protostars are found in both Spitzer and Herschel list it follows that in the investigated region we find 53 protostars and that the Spitzer selected protostars account for approximately two-thirds of the total.Comment: 40 pages, 12 figures, accepted for publication in Ap

    The X-ray eclipse of the dwarf nova HT CAS observed by the XMM-Newton satellite: spectral and timing analysis

    Full text link
    A cataclysmic variable is a binary system consisting of a white dwarf that accretes material from a secondary object via the Roche-lobe mechanism. In the case of long enough observation, a detailed temporal analysis can be performed, allowing the physical properties of the binary system to be determined. We present an XMM-Newton observation of the dwarf nova HT Cas acquired to resolve the binary system eclipses and constrain the origin of the X-rays observed. We also compare our results with previous ROSAT and ASCA data. After the spectral analysis of the three EPIC camera signals, the observed X-ray light curve was studied with well known techniques and the eclipse contact points obtained. The X-ray spectrum can be described by thermal bremsstrahlung of temperature kT1=6.89±0.23kT_1=6.89 \pm 0.23 keV plus a black-body component (upper limit) with temperature kT2=30−6+8kT_2=30_{-6}^{+8} eV. Neglecting the black-body, the bolometric absorption corrected flux is FBol=(6.5±0.1)×10−12F^{\rm{Bol}}=(6.5\pm 0.1)\times10^{-12} erg s−1^{-1} cm−2^{-2}, which, for a distance of HT Cas of 131 pc, corresponds to a bolometric luminosity of (1.33±0.02)×1031(1.33\pm 0.02)\times10^{31} erg s−1^{-1}. The study of the eclipse in the EPIC light curve permits us to constrain the size and location of the X-ray emitting region, which turns out to be close to the white dwarf radius. We measure an X-ray eclipse somewhat smaller (but only at a level of ≃1.5σ\simeq 1.5 \sigma) than the corresponding optical one. If this is the case, we have possibly identified the signature of either high latitude emission or a layer of X-ray emitting material partially obscured by an accretion disk.Comment: Accepted for publication on Astronomy and Astrophysics, 200

    22q11.2 Deletion Syndrome. Impact of Genetics in the Treatment of Conotruncal Heart Defects

    Get PDF
    Congenital heart diseases represent one of the hallmarks of 22q11.2 deletion syndrome. In particular, conotruncal heart defects are the most frequent cardiac malformations and are often associated with other specific additional cardiovascular anomalies. These findings, together with extracardiac manifestations, may affect perioperative management and influence clinical and surgical outcome. Over the past decades, advances in genetic and clinical diagnosis and surgical treatment have led to increased survival of these patients and to progressive improvements in postoperative outcome. Several studies have investigated long-term follow-up and results of cardiac surgery in this syndrome. The aim of our review is to examine the current literature data regarding cardiac outcome and surgical prognosis of patients with 22q11.2 deletion syndrome. We thoroughly evaluate the most frequent conotruncal heart defects associated with this syndrome, such as tetralogy of Fallot, pulmonary atresia with major aortopulmonary collateral arteries, aortic arch interruption, and truncus arteriosus, highlighting the impact of genetic aspects, comorbidities, and anatomical features on cardiac surgical treatment

    Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes

    Get PDF
    Silicon wire arrays, though attractive materials for use in photovoltaics and as photocathodes for hydrogen generation, have to date exhibited poor performance. Using a copper-catalyzed, vapor-liquid-solid–growth process, SiCl_4 and BCl_3 were used to grow ordered arrays of crystalline p-type silicon (p-Si) microwires on p^+-Si(111) substrates. When these wire arrays were used as photocathodes in contact with an aqueous methyl viologen^(2+/+) electrolyte, energy-conversion efficiencies of up to 3% were observed for monochromatic 808-nanometer light at fluxes comparable to solar illumination, despite an external quantum yield at short circuit of only 0.2. Internal quantum yields were at least 0.7, demonstrating that the measured photocurrents were limited by light absorption in the wire arrays, which filled only 4% of the incident optical plane in our test devices. The inherent performance of these wires thus conceptually allows the development of efficient photovoltaic and photoelectrochemical energy-conversion devices based on a radial junction platform

    Entanglement of electrons in interacting molecules

    Get PDF
    Quantum entanglement is a concept commonly used with reference to the existence of certain correlations in quantum systems that have no classical interpretation. It is a useful resource to enhance the mutual information of memory channels or to accelerate some quantum processes as, for example, the factorization in Shor's Algorithm. Moreover, entanglement is a physical observable directly measured by the von Neumann entropy of the system. We have used this concept in order to give a physical meaning to the electron correlation energy in systems of interacting electrons. The electronic correlation is not directly observable, since it is defined as the difference between the exact ground state energy of the many--electrons Schroedinger equation and the Hartree--Fock energy. We have calculated the correlation energy and compared with the entanglement, as functions of the nucleus--nucleus separation using, for the hydrogen molecule, the Configuration Interaction method. Then, in the same spirit, we have analyzed a dimer of ethylene, which represents the simplest organic conjugate system, changing the relative orientation and distance of the molecules, in order to obtain the configuration corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late
    • 

    corecore