5 research outputs found

    Lactobacillus Species from Iranian Jug Cheese: Identification and Selection of Probiotic Based on Safety and Functional Properties

    Get PDF
    Background and Objective: Traditional fermented products are appropriate sources for the isolation of indigenous bacteria with probiotic characteristics and potential similar or better than commercial probiotics. In this study, Lactobacillus species were isolated from jug cheese, a type of Iranian traditional cheese, and their potential probiotic characteristics were studied. Material and Methods: Study of the probiotic species included hemolytic activity, antibiotic susceptibility, inhibitory activity against pathogenic bacteria, low pH and bile salts tolerance, viability in gastrointestinal tract conditions and adhesion ability to HT-29 cells. Results and Conclusion: Results showed that the isolates included no hemolytic activity and were susceptible or intermediate susceptibility to most antibiotics. Of four isolates, Lacto-bacillus plantarum KMJC4 showed the strongest antibacterial activity (MIC = 6.25 mg ml-1) against Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus and Salmonella enterica subsp. enterica serovar Typhimurium. All the isolates, except Lactobacillus curvatus KMJC3, preserved their viability after transition through the simulated gastrointestinal tract conditions above 106 CFU ml-1. Lactobacillus acidipiscis KMJC2 and Lactobacillus plantarum KMJC4 showed the lowest and the highest adhesion rates to HT-29 cells with 3.55 and 6.80 Log10 CFU ml-1 (42.51 and 71.35%), respectively. Lactobacillus plantarum KMJC4 included a better bacterial inhibitory activity and adhesion to HT-29 cells than that Lactobacillus rhamnosus GG did as control. Lactobacillus brevis KMJC1 demonstrated appropriate probiotic characteristics such as antibacterial activity, viability in low pH, bile salts and gastrointestinal tract conditions and adhesion capability to HT-29 cells. In conclusion, Lactobacillus plantarum KMJC4 and Lactobacillus brevis KMJC1 were introduced as probiotic capable strains. Based on the results from the current in vitro study, finding probiotics with similar or better characteristics than commercial probiotics within indigenous bacteria is quite possible. In vivo assessment of the bacteria can be considered in future studies, investigating using possibilities of these bacteria in food industries to produce functional fermented foods and in pharmaceutical industries in form of probiotic capsules. Conflict of interest: The authors declare no conflict of interest

    A Case of Recurrent Hypersomnia With Autonomic Dysfunction.

    No full text
    We report the case of a 50-year-old man with disabling recurrent hypersomnia with autonomic instability due to catatonia in the setting of atypical bipolar disorder. Treatment with valproic acid for bipolar disorder resulted in complete resolution of symptoms

    Single and Co-Cultures of Proteolytic Lactic Acid Bacteria in the Manufacture of Fermented Milk with High ACE Inhibitory and Antioxidant Activities

    No full text
    In this study, single and co-cultures of proteolytic Lactobacillus delberueckii subsp. bulgaricus ORT2, Limosilactobacillus reuteri SRM2 and Lactococcus lactis subsp. lactis BRM3 isolated from different raw milk samples were applied as starter cultures to manufacture functional fermented milks. Peptide extracts from fermented milk samples were evaluated after fermentation and 7 days of cold storage for proteolytic, angiotensin-converting enzyme (ACE) inhibitory and antioxidant activity by different methods including 2, 2′-diphenyl-1-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP), OH-radical scavenging, and total antioxidant (molybdate-reducing activity). The highest proteolysis was found in milk fermented by co-cultures of three strains. Fermentation with the mentioned bacteria increased ACE inhibitory and antioxidant activity of the final products which were dependent on peptide concentration. The crude peptide extract obtained from fermented milk with triple co-culture showed the highest ACE inhibitory activity (IC50 = 0.61 mg/mL) which was reduced after 7 days of cold storage (IC50 = 0.78 mg/mL). Similar concentration-dependent activities were found in antioxidant activity at different antioxidant assays. Overall, high proteolytic activity resulted in increased ACE inhibitory and antioxidant activities, but the highest activity was not necessarily found for the samples with the highest proteolytic activity. The results of this study suggest the potential of using co-cultures of L. delberueckii subsp. bulgaricus, L. reuteri and L. lactis subsp. Lactis to manufacture antihypertensive fermented milk

    Single and Co-Cultures of Proteolytic Lactic Acid Bacteria in the Manufacture of Fermented Milk with High ACE Inhibitory and Antioxidant Activities

    No full text
    In this study, single and co-cultures of proteolytic Lactobacillus delberueckii subsp. bulgaricus ORT2, Limosilactobacillus reuteri SRM2 and Lactococcus lactis subsp. lactis BRM3 isolated from different raw milk samples were applied as starter cultures to manufacture functional fermented milks. Peptide extracts from fermented milk samples were evaluated after fermentation and 7 days of cold storage for proteolytic, angiotensin-converting enzyme (ACE) inhibitory and antioxidant activity by different methods including 2, 2′-diphenyl-1-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP), OH-radical scavenging, and total antioxidant (molybdate-reducing activity). The highest proteolysis was found in milk fermented by co-cultures of three strains. Fermentation with the mentioned bacteria increased ACE inhibitory and antioxidant activity of the final products which were dependent on peptide concentration. The crude peptide extract obtained from fermented milk with triple co-culture showed the highest ACE inhibitory activity (IC50 = 0.61 mg/mL) which was reduced after 7 days of cold storage (IC50 = 0.78 mg/mL). Similar concentration-dependent activities were found in antioxidant activity at different antioxidant assays. Overall, high proteolytic activity resulted in increased ACE inhibitory and antioxidant activities, but the highest activity was not necessarily found for the samples with the highest proteolytic activity. The results of this study suggest the potential of using co-cultures of L. delberueckii subsp. bulgaricus, L. reuteri and L. lactis subsp. Lactis to manufacture antihypertensive fermented milk
    corecore