31 research outputs found

    Quantitative MRI and EMG study of the brachial plexus

    Get PDF
    This thesis describes the development and applications of quantitative MRI and combined EMG and MRI study of Brachial Plexus. The protocols developed in this thesis have been used on normal healthy subjects, aiming at characterizing the tissues based on their MR and EMG parameters. The Brachial Plexus is the upper portion of the peripheral nervous system and controls the movements of shoulder and arms. Neurological disorders in the brachial plexus can result from cervical spondylotic neuropathy due to compression of nerve roots exiting from vertebra or compression of the spinal cord due to bulging discs. MRI provides the opportunity to obtain precise information on the location of these disorders and to provide quantitative biomarkers. EMG in the form of the distribution of F-latency (DFL) is a recently introduced nerve conduction parameter that can detect functional symptoms with such disorders. To study the brachial plexus the diffusion weighted MRI with body signal suppression (DWIBS) technique was used to highlight the nerves from surrounding tissues. This technique was then used to investigate the diffusivity of water molecules in the peripheral nerve axon. The diffusion time dependency of the diffusion coefficient was used to study the presence of restricted diffusion in the brachial plexus. A clear reduction of the apparent diffusion coefficient was observed with long diffusion times and confirmed the restricted diffusion in nerves and cord. The T2 relaxation was used to investigate the properties of intercellular and intracellular space in peripheral nerves. Diffusion weighting dependency of T2 and echo time dependency of apparent diffusion coefficient (ADC) was observed in initial studies. The magnetisation transfer (MT) and z-spectra were used to study macromolecular characteristics and exchange mechanisms. Asymmetry in z-spectra both for nerves and spinal cord was observed, this relates to possible detection of the nuclear overhauser effect (NOE) in the brachial plexus. Quantitative MRI studies showed that these parameters can be used as important biomarkers for neurological studies in the brachial plexus. The DFL, representing the motor nerve fibres conduction characteristics, was measured for normal healthy nerves and combined with MR parameters. Correlation between DFL and MR parameters was observed for the first time

    Quantitative MRI and EMG study of the brachial plexus

    Get PDF
    This thesis describes the development and applications of quantitative MRI and combined EMG and MRI study of Brachial Plexus. The protocols developed in this thesis have been used on normal healthy subjects, aiming at characterizing the tissues based on their MR and EMG parameters. The Brachial Plexus is the upper portion of the peripheral nervous system and controls the movements of shoulder and arms. Neurological disorders in the brachial plexus can result from cervical spondylotic neuropathy due to compression of nerve roots exiting from vertebra or compression of the spinal cord due to bulging discs. MRI provides the opportunity to obtain precise information on the location of these disorders and to provide quantitative biomarkers. EMG in the form of the distribution of F-latency (DFL) is a recently introduced nerve conduction parameter that can detect functional symptoms with such disorders. To study the brachial plexus the diffusion weighted MRI with body signal suppression (DWIBS) technique was used to highlight the nerves from surrounding tissues. This technique was then used to investigate the diffusivity of water molecules in the peripheral nerve axon. The diffusion time dependency of the diffusion coefficient was used to study the presence of restricted diffusion in the brachial plexus. A clear reduction of the apparent diffusion coefficient was observed with long diffusion times and confirmed the restricted diffusion in nerves and cord. The T2 relaxation was used to investigate the properties of intercellular and intracellular space in peripheral nerves. Diffusion weighting dependency of T2 and echo time dependency of apparent diffusion coefficient (ADC) was observed in initial studies. The magnetisation transfer (MT) and z-spectra were used to study macromolecular characteristics and exchange mechanisms. Asymmetry in z-spectra both for nerves and spinal cord was observed, this relates to possible detection of the nuclear overhauser effect (NOE) in the brachial plexus. Quantitative MRI studies showed that these parameters can be used as important biomarkers for neurological studies in the brachial plexus. The DFL, representing the motor nerve fibres conduction characteristics, was measured for normal healthy nerves and combined with MR parameters. Correlation between DFL and MR parameters was observed for the first time

    Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques

    Full text link
    Hypertension is a potentially unsafe health ailment, which can be indicated directly from the Blood pressure (BP). Hypertension always leads to other health complications. Continuous monitoring of BP is very important; however, cuff-based BP measurements are discrete and uncomfortable to the user. To address this need, a cuff-less, continuous and a non-invasive BP measurement system is proposed using Photoplethysmogram (PPG) signal and demographic features using machine learning (ML) algorithms. PPG signals were acquired from 219 subjects, which undergo pre-processing and feature extraction steps. Time, frequency and time-frequency domain features were extracted from the PPG and their derivative signals. Feature selection techniques were used to reduce the computational complexity and to decrease the chance of over-fitting the ML algorithms. The features were then used to train and evaluate ML algorithms. The best regression models were selected for Systolic BP (SBP) and Diastolic BP (DBP) estimation individually. Gaussian Process Regression (GPR) along with ReliefF feature selection algorithm outperforms other algorithms in estimating SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively. This ML model can be implemented in hardware systems to continuously monitor BP and avoid any critical health conditions due to sudden changes.Comment: Accepted for publication in Sensor, 14 Figures, 14 Table

    Multi-shot Echo Planar Imaging for accelerated Cartesian MR Fingerprinting: An alternative to conventional spiral MR Fingerprinting.

    Get PDF
    PURPOSE: To develop an accelerated Cartesian MRF implementation using a multi-shot EPI sequence for rapid simultaneous quantification of T1 and T2 parameters. METHODS: The proposed Cartesian MRF method involved the acquisition of highly subsampled MR images using a 16-shot EPI readout. A linearly varying flip angle train was used for rapid, simultaneous T1 and T2 quantification. The results were compared to a conventional spiral MRF implementation. The acquisition time per slice was 8s and this method was validated on two different phantoms and three healthy volunteer brains in vivo. RESULTS: Joint T1 and T2 estimations using the 16-shot EPI readout are in good agreement with the spiral implementation using the same acquisition parameters (<4% deviation for T1 and <6% deviation for T2). The T1 and T2 values also agree with the conventional values previously reported in the literature. The visual qualities of fine brain structures in the multi-parametric maps generated by multi-shot EPI-MRF and Spiral-MRF implementations were comparable. CONCLUSION: The multi-shot EPI-MRF method generated accurate quantitative multi-parametric maps similar to conventional Spiral-MRF. This multi-shot approach achieved considerable k-space subsampling and comparatively short TRs in a similar manner to spirals and therefore provides an alternative for performing MRF using an accelerated Cartesian readout; thereby increasing the potential usability of MRF.The research leading to these results has received funding from the European Commission H2020 Framework Programme (H2020- MSCAITN- 2014), number 642685 MacSeNet, the Engineering and Physical Sciences Research Council (EPSRC) platform Compressed Quantitative MRI grant, number EP/M019802/1 and the Scottish Research Partnership in Engineering (SRPe) award, number SRPe PECRE1718/ 17

    Increase in conduction velocity in myelinated nerves due to stretch – An experimental verification

    Get PDF
    BackgroundBased on published experimental evidence, a recent publication revealed an anomalous phenomenon in nerve conduction: for myelinated nerves the nerve conduction velocity (NCV) increases with stretch, which should have been the opposite according to existing concepts and theories since the diameter decreases on stretching. To resolve the anomaly, a new conduction mechanism for myelinated nerves was proposed based on physiological changes in the nodal region, introducing a new electrical resistance at the node. The earlier experimental measurements of NCV were performed on the ulnar nerve at different angles of flexion, focusing at the elbow region, but left some uncertainty for not reporting the lengths of nerve segments involved so that the magnitudes of stretch could not be estimated.AimsThe aim of the present study was to relate NCV of myelinated nerves with different magnitudes of stretch through careful measurements.MethodEssentially, we duplicated the earlier published NCV measurements on ulnar nerves at different angles of flexion but recording appropriate distances between nerve stimulation points on the skin carefully and assuming that the lengths of the underlying nerve segment undergoes the same percentages of changes as that on the skin outside.ResultsWe found that the percentage of nerve stretch across the elbow is directly proportional to the angle of flexion and that the percentage increase in NCV is directly proportional to the percentage increase in nerve stretch. Page’s L Trend test also supported the above trends of changes through obtained p values.DiscussionOur experimental findings on myelinated nerves agree with those of some recent publications which measured changes in CV of single fibres, both myelinated and unmyelinated, on stretch. Analyzing all the observed results, we may infer that the new conduction mechanism based on the nodal resistance and proposed by the recent publication mentioned above is the most plausible one to explain the increase in CV with nerve stretch. Furthermore, interpreting the experimental results in the light of the new mechanism, we may suggest that the ulnar nerve at the forearm is always under a mild stretch, with slightly increased NCV of the myelinated nerves

    Can AI help in screening Viral and COVID-19 pneumonia?

    Full text link
    Coronavirus disease (COVID-19) is a pandemic disease, which has already caused thousands of causalities and infected several millions of people worldwide. Any technological tool enabling rapid screening of the COVID-19 infection with high accuracy can be crucially helpful to healthcare professionals. The main clinical tool currently in use for the diagnosis of COVID-19 is the Reverse transcription polymerase chain reaction (RT-PCR), which is expensive, less-sensitive and requires specialized medical personnel. X-ray imaging is an easily accessible tool that can be an excellent alternative in the COVID-19 diagnosis. This research was taken to investigate the utility of artificial intelligence (AI) in the rapid and accurate detection of COVID-19 from chest X-ray images. The aim of this paper is to propose a robust technique for automatic detection of COVID-19 pneumonia from digital chest X-ray images applying pre-trained deep-learning algorithms while maximizing the detection accuracy. A public database was created by the authors combining several public databases and also by collecting images from recently published articles. The database contains a mixture of 423 COVID-19, 1485 viral pneumonia, and 1579 normal chest X-ray images. Transfer learning technique was used with the help of image augmentation to train and validate several pre-trained deep Convolutional Neural Networks (CNNs). The networks were trained to classify two different schemes: i) normal and COVID-19 pneumonia; ii) normal, viral and COVID-19 pneumonia with and without image augmentation. The classification accuracy, precision, sensitivity, and specificity for both the schemes were 99.7%, 99.7%, 99.7% and 99.55% and 97.9%, 97.95%, 97.9%, and 98.8%, respectively.Comment: 12 pages, 9 Figure

    A Novel Non-Invasive Estimation of Respiration Rate from Motion Corrupted Photoplethysmograph Signal Using Machine Learning Model

    Get PDF
    Respiratory ailments such as asthma, chronic obstructive pulmonary disease (COPD), pneumonia, and lung cancer are life-Threatening. Respiration rate (RR) is a vital indicator of the wellness of a patient. Continuous monitoring of RR can provide early indication and thereby save lives. However, a real-Time continuous RR monitoring facility is only available at the intensive care unit (ICU) due to the size and cost of the equipment. Recent researches have proposed Photoplethysmogram (PPG) and/ Electrocardiogram (ECG) signals for RR estimation however, the usage of ECG is limited due to the unavailability of it in wearable devices. Due to the advent of wearable smartwatches with built-in PPG sensors, it is now being considered for continuous monitoring of RR. This paper describes a novel approach for RR estimation using motion artifact correction and machine learning (ML) models with the PPG signal features. Feature selection algorithms were used to reduce computational complexity and the chance of overfitting. The best ML model and the best feature selection algorithm combination were fine-Tuned to optimize its performance using hyperparameter optimization. Gaussian Process Regression (GPR) with Fit a Gaussian process regression model (Fitrgp) feature selection algorithm outperformed all other combinations and exhibits a root mean squared error (RMSE), mean absolute error (MAE), and two-standard deviation (2SD) of 2.63, 1.97, and 5.25 breaths per minute, respectively. Patients would be able to track RR at a lower cost and with less inconvenience if RR can be extracted efficiently and reliably from the PPG signal. 2013 IEEE.Corresponding authors: Muhammad E. H. Chowdhury ([email protected]), Mamun Bin Ibne Reaz ([email protected]), and Md. Shafayet Hossain ([email protected]) This work was supported in part by the Qatar National Research under Grant NPRP12S-0227-190164, and in part by the International Research Collaboration Co-Fund (IRCC) through Qatar University under Grant IRCC-2021-001. The statements made herein are solely the responsibility of the authors.Scopu

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore