1,996 research outputs found
Design and Development of a SNAP-8 Mercury Pump Motor Assembly
Design and performance of mercury pump motor for SNAP 8 electrical generato
A Psychometric Evaluation of the Intention Scale for Providers-Direct Items.
M.A. Thesis. University of Hawaiʻi at Mānoa 2018
Submerged membrane filtration adsorption hybrid system for the removal of organic micropollutants from a water reclamation plant reverse osmosis concentrate
© 2016 Elsevier B.V. Reverse osmosis (RO) is a widespread water treatment process utilised in water reuse applications. However, the improper discharge of RO concentrate (ROC) containing organic micropollutants such as pharmaceuticals into the environment may cause potential health risks to non-target species and particularly those in aquatic environments. A study was conducted using a submerged membrane-filtration/granular activated carbon (GAC) adsorption hybrid system to remove organic micropollutants from a water treatment plant ROC by initially adding 10 g GAC /L of membrane reactor volume with 10% daily GAC replacement. The percentage of dissolved organic carbon removal varied from 60% to 80% over an operation lasting 10 days. Removal of organic micropollutants was almost complete for virtually all compounds. Of the 19 micropollutants tested, only two remained (the less hydrophobic DEET 27 ng/L and the hydrophilic sulfamethoxazole 35 ng/L) below 80% removal on day 1, while five of the most hydrophobic micropollutants were detectable in very small concentrations ( 89%–> 99% being removed. High percentages of micropollutants were removed probably because of their high hydrophobicity or they had positive or neutral charges and therefore they were electrostatically adsorbed to the negatively charged GAC
Design and development of a canned-motor pump for NaK service
Design and development of canned-motor pump for high temperature NaK service in SNAP-
Two closely related 2-(benzofuran-2-yl)-2-oxoethyl benzoates: structural differences and C 14H...O hydrogen-bonded supramolecular assemblies
The compounds 2-(1-benzofuran-2-yl)-2-oxoethyl 2-nitrobenzoate, C17H11NO6 (I), and 2-(1-benzofuran-2-yl)-2-oxoethyl 2-aminobenzoate, C17H13NO4 (II),
were synthesized under mild conditions. Their molecular structures were
characterized by both spectroscopic and single-crystal X-ray diffraction analysis.
The molecular conformations of both title compounds are generally similar.
However, different ortho-substituted moieties at the phenyl ring of the two
compounds cause deviations in the torsion angles between the carbonyl group
and the attached phenyl ring. In compound (I), the ortho-nitrophenyl ring is
twisted away from the adjacent carbonyl group whereas in compound (II), the
ortho-aminophenyl ring is almost co-planar with the carbonyl group. In the
crystal of compound (I), two C 14
Developing a methodology for three-dimensional correlation of PET–CT images and whole-mount histopathology in non-small-cell lung cancer
Background: Understanding the three-dimensional (3D) volumetric relationship between imaging and functional or histopathologic heterogeneity of tumours is a key concept in the development of image-guided radiotherapy. Our aim was to develop a methodologic framework to enable the reconstruction of resected lung specimens containing non-small-cell lung cancer (NSCLC), to register the result in 3D with diagnostic imaging, and to import the reconstruction into a radiation treatment planning system. Methods and Results: We recruited 12 patients for an investigation of radiology-pathology correlation (RPC) in NSCLC. Before resection, imaging by positron emission tomography (PET) or computed tomography (CT) was obtained. Resected specimens were formalin-fixed for 1-24 hours before sectioning at 3-mm to 10-mm intervals. To try to retain the original shape, we embedded the specimens in agar before sectioning. Consecutive sections were laid out for photography and manually adjusted to maintain shape. Following embedding, the tissue blocks underwent whole-mount sectioning (4-μm sections) and staining with hematoxylin and eosin. Large histopathology slides were used to whole-mount entire sections for digitization. The correct sequence was maintained to assist in subsequent reconstruction. Using Photoshop (Adobe Systems Incorporated, San Jose, CA, U.S.A.), contours were placed on the photographic images to represent the external borders of the section and the extent of macroscopic disease. Sections were stacked in sequence and manually oriented in Photoshop. The macroscopic tumour contours were then transferred to MATLAB (The Mathworks, Natick, MA, U.S.A.) and stacked, producing 3D surface renderings of the resected specimen and embedded gross tumour. To evaluate the microscopic extent of disease, customized "tile-based" and commercial confocal panoramic laser scanning (TISSUEscope: Biomedical Photometrics, Waterloo, ON) systems were used to generate digital images of whole-mount histopathology sections. Using the digital whole-mount images and imaging software, we contoured the gross and microscopic extent of disease. Two methods of registering pathology and imaging were used. First, selected PET and CT images were transferred into Photoshop, where they were contoured, stacked, and reconstructed. After importing the pathology and the imaging contours to MATLAB, the contours were reconstructed, manually rotated, and rigidly registered. In the second method, MATLAB tumour renderings were exported to a software platform for manual registration with the original PET and CT images in multiple planes. Data from this software platform were then exported to the Pinnacle radiation treatment planning system in DICOM (Digital Imaging and Communications in Medicine) format. Conclusions: There is no one definitive method for 3D volumetric RPC in NSCLC. An innovative approach to the 3D reconstruction of resected NSCLC specimens incorporates agar embedding of the specimen and whole-mount digital histopathology. The reconstructions can be rigidly and manually registered to imaging modalities such as CT and PET and exported to a radiation treatment planning system
Design of an electrochemical micromachining machine
Electrochemical micromachining (μECM) is a non-conventional machining process based on the phenomenon of electrolysis. μECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the design of a next generation μECM machine for the automotive, aerospace, medical and metrology sectors. It has three axes of motion (X, Y, Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2-nm resolution encoders for ultra precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. This machine features two process control algorithms: fuzzy logic control and adaptive feed rate. A self-developed pulse generator has been mounted and interfaced with the machine and a wire ECM grinding device has been added. The pulse generator has the possibility to reverse the pulse polarity for on-line tool fabrication.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMPICT- FoF-285614)
On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters
Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system
Cluster randomised trials in the medical literature: two bibliometric surveys
Background: Several reviews of published cluster randomised trials have reported that about half did not take clustering into account in the analysis, which was thus incorrect and potentially misleading. In this paper I ask whether cluster randomised trials are increasing in both number and quality of reporting. Methods: Computer search for papers on cluster randomised trials since 1980, hand search of trial reports published in selected volumes of the British Medical Journal over 20 years. Results: There has been a large increase in the numbers of methodological papers and of trial reports using the term 'cluster random' in recent years, with about equal numbers of each type of paper. The British Medical Journal contained more such reports than any other journal. In this journal there was a corresponding increase over time in the number of trials where subjects were randomised in clusters. In 2003 all reports showed awareness of the need to allow for clustering in the analysis. In 1993 and before clustering was ignored in most such trials. Conclusion: Cluster trials are becoming more frequent and reporting is of higher quality. Perhaps statistician pressure works
- …