47 research outputs found
Reconstruction of the 2014 eruption sequence of Ontake Volcano from recorded images and interviews
A phreatic eruption at Mount Ontake (3067 m) on September 27, 2014, led to 64 casualties, including missing people. In this paper, we clarify the eruption sequence of the 2014 eruption from recorded images (photographs and videos obtained by climbers) and interviews with mountain guides and workers in mountain huts. The onset of eruption was sudden, without any clear precursory surface phenomena (such as ground rumbling or strong smell of sulfide). Our data indicate that the eruption sequence can be divided into three phases. Phase 1: The eruption started with dry pyroclastic density currents (PDCs) caused by ash column collapse. The PDCs flowed down 2.5 km SW and 2 km NW from the craters. In addition, PDCs moved horizontally by approximately 1.5 km toward N and E beyond summit ridges. The temperature of PDCs at the summit area partially exceeded 100 °C, and an analysis of interview results suggested that the temperature of PDCs was mostly in the range of 30–100 °C. At the summit area, there were violent falling ballistic rocks. Phase 2: When the outflow of PDCs stopped, the altitude of the eruption column increased; tephra with muddy rain started to fall; and ambient air temperature decreased. Falling ballistic rocks were almost absent during this phase. Phase 3: Finally, muddy hot water flowed out from the craters. These models reconstructed from observations are consistent with the phreatic eruption models and typical eruption sequences recorded at similar volcanoes.ArticleEarth, Planets and Space. 68:79 (2016)journal articl
Reconstruction of a phreatic eruption on 27 September 2014 at Ontake volcano, central Japan, based on proximal pyroclastic density current and fallout deposits
The phreatic eruption at Ontake volcano on 27 September 2014, which caused the worst volcanic disaster in the past half-century in Japan, was reconstructed based on observations of the proximal pyroclastic density current (PDC) and fallout deposits. Witness observations were also used to clarify the eruption process. The deposits are divided into three major depositional units (Units A, B, and C) which are characterized by massive, extremely poorly sorted, and multimodal grain-size distribution with 30–50 wt% of fine ash (silt–clay component). The depositional condition was initially dry but eventually changed to wet. Unit A originated from gravity-driven turbulent PDCs in the relatively dry, vent-opening phase. Unit B was then produced mainly by fallout from a vigorous moist plume during vent development. Unit C was derived from wet ash fall in the declining stage. Ballistic ejecta continuously occurred during vent opening and development. As observed in the finest population of the grain-size distribution, aggregate particles were formed throughout the eruption, and the effect of water in the plume on the aggregation increased with time and distance. Based on the deposit thickness, duration, and grain-size data, and by applying a scaling analysis using a depth-averaged model of turbulent gravity currents, the particle concentration and initial flow speed of the PDC at the summit area were estimated as 2 × 10−4–2 × 10−3 and 24–28 m/s, respectively. The tephra thinning trend in the proximal area shows a steeper slope than in similar-sized magmatic eruptions, indicating a large tephra volume deposited over a short distance owing to the wet dispersal conditions. The Ontake eruption provided an opportunity to examine the deposits from a phreatic eruption with a complex eruption sequence that reflects the effect of external water on the eruption dynamics.ArticleEarth, Planets and Space. 68: 82(2016)journal articl
Genesis and interaction of magmas at Nishinoshima volcano in the Ogasawara arc, western Pacific: new insights from submarine deposits of the 2020 explosive eruptions
Sudden changes of eruption styles and magma compositions at arc volcanoes are enigmatic processes. Nishinoshima volcano, western Pacific, has had historical eruptions in 1973–1974 and from 2013 on and off to the present day. These eruptions were characterized by effusive Strombolian eruptions of andesite magmas until mid-June 2020, when they suddenly transitioned to violent explosive Strombolian eruptions that produced tephra fallout over a wide area. To understand this transition, we conducted marine surveys and sampling of the extensive submarine deposits of the tephra fallout. Our new data demonstrate that the full compositional range of the 2020 eruptions spans from basalt to dacite. We present evidence for magma mixing of newly injected basalt with andesite magmas. Nishinoshima consists of an andesitic main edifice surrounded by basaltic knolls: previous studies have shown that Nishinoshima andesite compositions can be generated by olivine fractionation of primary andesitic magmas that result from partial melting of hydrous mantle at relatively low pressures under the thin crust of the Ogasawara arc; knoll basalt compositions can be generated by partial melting of mantle at greater depths and were interpreted as older events of the volcano. We show that basalt magmas could have been generated throughout the entire history of Nishinoshima. In addition, we show that andesites from Nishinoshima and nearby Nishinoshima-Minami Knoll, which are only ∼8 km apart, have distinct subduction components. Together, these data improve our understanding of the diverse primary magmas responsible for the construction and continuing eruptive activity of an active island arc volcano
Geological findings in the 2021 Nishinoshima comprehensive scientific research project
令和3年度の総合学術調査により、2020年以降の西之島噴火の火砕堆積物の岩相と分布の概略を把握し、予察的な岩石学的分析を行った。2019-2020年(第4期)の噴火活動では、安山岩質溶岩の流出主体の噴火から、玄武岩質安山岩マグマによるバイオレント・ストロンボリ式噴火に変化したことが知られているが、今回の調査では化学組成の変化と噴火様式の変化が同時期であったことがより明瞭になった。また、バイオレント・ストロンボリ式噴火に転じたのちは、脆性的な破砕が特徴的な灰噴火ないし水蒸気マグマ噴火に遷移したことが明らかになった。2021年8月14日の噴火も噴出物の特徴が第4期火砕堆積物と類似するため、同様な噴火様式であったと考えられる。Through the Nishinoshima comprehensive scientific research project in 2021, we examined the outline of distribution and lithological profiles of the pyroclastic deposits of Nishinoshima volcano after eruption in 2019–2020 (Episode 4), and conducted a preliminary petrological analysis. The 2019–2020 eruption activity changed from andesitic lava outflow to basaltic–andesitic violent strombolian eruption within the period. In the survey conducted, it became clearer that the changes in chemical composition and eruption style occurred around the same time. After a continuation of the violent strombolian eruption, the eruption style changed furthermore to ash eruption or phreatomagmatic eruption, which is characterized by the brittle fragmentation of pyroclastic materials. The eruption style on August 14, 2021 (the first eruption of Episode 5) was inferred to be similar to the late stage of Episode 4, because of their similar ash deposit characteristics.departmental bulletin pape
The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: A long-term (>1 Ma) record offshore Montserrat, Lesser Antilles
Hole U1395B, drilled southeast of Montserrat during Integrated Ocean Drilling Program Expedition 340, provides a long (>1 Ma) and detailed record of eruptive and mass-wasting events (>130 discrete events). This record can be used to explore the temporal evolution in volcanic activity and landslides at an arc volcano. Analysis of tephra fall and volcaniclastic turbidite deposits in the drill cores reveals three heightened periods of volcanic activity on the island of Montserrat (?930 ka to ?900 ka, ?810 ka to ?760 ka, and ?190 ka to ?120 ka) that coincide with periods of increased volcano instability and mass-wasting. The youngest of these periods marks the peak in activity at the Soufrière Hills volcano. The largest flank collapse of this volcano (?130 ka) occurred towards the end of this period, and two younger landslides also occurred during a period of relatively elevated volcanism. These three landslides represent the only large (>0.3 km3) flank collapses of the Soufrière Hills edifice, and their timing also coincides with periods of rapid sea-level rise (>5 m/ka). Available age data from other island arc volcanoes suggests a general correlation between the timing of large landslides and periods of rapid sea-level rise, but this is not observed for volcanoes in intra-plate ocean settings. We thus infer that rapid sea-level rise may modulate the timing of collapse at island arc volcanoes, but not in larger ocean-island settings
Recommended from our members
Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin
Using temperature gradients measured in 10 holes at 6 sites, we generate the first high fidelity heat flow measurements from Integrated Ocean Drilling Program drill holes across the northern and central Lesser Antilles arc and back arc Grenada basin. The implied heat flow, after correcting for bathymetry and sedimentation effects, ranges from about 0.1 W/m² on the crest of the arc, midway between the volcanic islands of Montserrat and Guadeloupe, to 15 km from the crest in the back arc direction. Combined with previous measurements, we find that the magnitude and spatial pattern of heat flow are similar to those at continental arcs. The heat flow in the Grenada basin to the west of the active arc is 0.06 W/m², a factor of 2 lower than that found in the previous and most recent study. There is no thermal evidence for significant shallow fluid advection at any of these sites. Present-day volcanism is confined to the region with the highest heat flow.American Geophysical Union – Geochemistry, Geophysics, Geosystems. This is the publisher’s final pdf. The published article is copyrighted by the American Geophysical Union and can be found at: http://www.agu.org/journals/gc/.Keywords: volcanic arc., Lesser Antilles, IODP, heat flow, back arc, Grenada basinKeywords: volcanic arc., Lesser Antilles, IODP, heat flow, back arc, Grenada basi
Recommended from our members
Permeability and pressure measurements in Lesser Antilles submarine slides: Evidence for pressure-driven slow-slip failure
Recent studies hypothesize that some submarine slides fail via pressure-driven slow-slip deformation. To test this hypothesis, this study derives pore pressures in failed and adjacent unfailed deep marine sediments by integrating rock physics models, physical property measurements on recovered sediment core, and wireline logs. Two drill sites (U1394 and U1399) drilled through interpreted slide debris; a third (U1395) drilled into normal marine sediment. Near-hydrostatic fluid pressure exists in sediments at site U1395. In contrast, results at both sites U1394 and U1399 indicate elevated pore fluid pressures in some sediment. We suggest that high pore pressure at the base of a submarine slide deposit at site U1394 results from slide shearing. High pore pressure exists throughout much of site U1399, and Mohr circle analysis suggests that only slight changes in the stress regime will trigger motion. Consolidation tests and permeability measurements indicate moderately low (~10⁻¹⁶–10⁻¹⁷ m²) permeability and overconsolidation in fine-grained slide debris, implying that these sediments act as seals. Three mechanisms, in isolation or in combination, may produce the observed elevated pore fluid pressures at site U1399: (1) rapid sedimentation, (2) lateral fluid flow, and (3) shearing that causes sediments to contract, increasing pore pressure. Our preferred hypothesis is this third mechanism because it explains both elevated fluid pressure and sediment overconsolidation without requiring high sedimentation rates. Our combined analysis of subsurface pore pressures, drilling data, and regional seismic images indicates that slope failure offshore Martinique is perhaps an ongoing, creep-like process where small stress changes trigger motion
Recommended from our members
Late Pleistocene stratigraphy of IODP Site U1396 and compiled chronology offshore of south and south west Montserrat, Lesser Antilles
Marine sediments around volcanic islands contain an archive of volcaniclastic deposits, which can be used to reconstruct the volcanic history of an area. Such records hold many advantages over often incomplete terrestrial data sets. This includes the potential for precise and continuous dating of intervening sediment packages, which allow a correlatable and temporally constrained stratigraphic framework to be constructed across multiple marine sediment cores. Here we discuss a marine record of eruptive and mass-wasting events spanning ~250 ka offshore of Montserrat, using new data from IODP Expedition 340, as well as previously collected cores. By using a combination of high-resolution oxygen isotope stratigraphy, AMS radiocarbon dating, biostratigraphy of foraminifera and calcareous nannofossils, and clast componentry, we identify five major events at Soufriere Hills volcano since 250 ka. Lateral correlations of these events across sediment cores collected offshore of the south and south west of Montserrat have improved our understanding of the timing, extent and associations between events in this area. Correlations reveal that powerful and potentially erosive density-currents traveled at least 33 km offshore and demonstrate that marine deposits, produced by eruption-fed and mass-wasting events on volcanic islands, are heterogeneous in their spatial distribution. Thus, multiple drilling/coring sites are needed to reconstruct the full chronostratigraphy of volcanic islands. This multidisciplinary study will be vital to interpreting the chaotic records of submarine landslides at other sites drilled during Expedition 340 and provides a framework that can be applied to the stratigraphic analysis of sediments surrounding other volcanic islands.Keywords: Debris avalanche, Pyroclastic flows, Late quaternary, Submarine evidenc