40 research outputs found

    The impact and significance of tephra deposition on a Holocene forest environment in the North Cascades, Washington, USA.

    Get PDF
    © 2016 Elsevier Ltd. High-resolution palaeoecological analyses (stratigraphy, tephra geochemistry, radiocarbon dating, pollen and ordination) were used to reconstruct a Holocene vegetation history of a watershed in the Pacific Northwest of America to evaluate the effects and duration of tephra deposition on a forest environment and the significance of these effects compared to long-term trends. Three tephra deposits were detected and evaluated: MLF-T158 and MLC-T324 from the climactic eruption of Mount Mazama, MLC-T480 from a Late Pleistocene eruption of Mount Mazama and MLC-T485 from a Glacier Peak eruption. Records were examined from both the centre and fringe of the basin to elucidate regional and local effects. The significance of tephra impacts independent of underlying long-term trends was confirmed using partial redundancy analysis. Tephra deposition from the climactic eruption of Mount Mazama approximately 7600 cal. years BP caused a significant local impact, reflected in the fringe location by changes to open habitat vegetation (Cyperaceae and Poaceae) and changes in aquatic macrophytes (Myriophyllum spicatum, Potamogeton, Equisetum and the alga Pediastrum). There was no significant impact of the climactic Mazama tephra or other tephras detected on the pollen record of the central core. Changes in this core are potentially climate driven. Overall, significant tephra fall was demonstrated through high resolution analyses indicating a local effect on the terrestrial and aquatic environment, but there was no significant impact on the regional forest dependent of underlying environmental changes

    Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research

    Get PDF
    AIMS The Valve Academic Research Consortium (VARC), founded in 2010, was intended to (i) identify appropriate clinical endpoints and (ii) standardize definitions of these endpoints for transcatheter and surgical aortic valve clinical trials. Rapid evolution of the field, including the emergence of new complications, expanding clinical indications, and novel therapy strategies have mandated further refinement and expansion of these definitions to ensure clinical relevance. This document provides an update of the most appropriate clinical endpoint definitions to be used in the conduct of transcatheter and surgical aortic valve clinical research.METHODS AND RESULTS Several years after the publication of the VARC-2 manuscript, an in-person meeting was held involving over 50 independent clinical experts representing several professional societies, academic research organizations, the US Food and Drug Administration (FDA), and industry representatives to (i) evaluate utilization of VARC endpoint definitions in clinical research, (ii) discuss the scope of this focused update, and (iii) review and revise specific clinical endpoint definitions. A writing committee of independent experts was convened and subsequently met to further address outstanding issues. There were ongoing discussions with FDA and many experts to develop a new classification schema for bioprosthetic valve dysfunction and failure. Overall, this multi-disciplinary process has resulted in important recommendations for data reporting, clinical research methods, and updated endpoint definitions. New definitions or modifications of existing & nbsp;definitions are being proposed for repeat hospitalizations, access site-related complications, bleeding events, conduction disturbances, cardiac structural complications, and bioprosthetic valve dysfunction and failure (including valve leaflet thickening and thrombosis). A more granular 5-class grading scheme for paravalvular regurgitation (PVR) is being proposed to help refine the assessment of PVR. Finally, more specific recommendations on quality-of-life assessments have been included, which have been targeted to specific clinical study designs.CONCLUSIONS Acknowledging the dynamic and evolving nature of less-invasive aortic valve therapies, further refinements of clinical research processes are required. The adoption of these updated and newly proposed VARC-3 endpoints and definitions will ensure homogenous event reporting, accurate adjudication, and appropriate comparisons of clinical research studies involving devices and new therapeutic strategies.Cardiolog

    Valve Academic Research Consortium 3: updated endpoint definitions for aortic valve clinical research

    Get PDF
    Aims The Valve Academic Research Consortium (VARC), founded in 2010, was intended to (i) identify appropriate clinical endpoints and (ii) standardize definitions of these endpoints for transcatheter and surgical aortic valve clinical trials. Rapid evolution of the field, including the emergence of new complications, expanding clinical indications, and novel therapy strategies have mandated further refinement and expansion of these definitions to ensure clinical relevance. This document provides an update of the most appropriate clinical endpoint definitions to be used in the conduct of transcatheter and surgical aortic valve clinical research.Methods and results Several years after the publication of the VARC-2 manuscript, an in-person meeting was held involving over 50 independent clinical experts representing several professional societies, academic research organizations, the US Food and Drug Administration (FDA), and industry representatives to (i) evaluate utilization of VARC endpoint definitions in clinical research, (ii) discuss the scope of this focused update, and (iii) review and revise specific clinical endpoint definitions. A writing committee of independent experts was convened and subsequently met to further address outstanding issues. There were ongoing discussions with FDA and many experts to develop a new classification schema for bioprosthetic valve dysfunction and failure. Overall, this multi-disciplinary process has resulted in important recommendations for data reporting, clinical research methods, and updated endpoint definitions. New definitions or modifications of existing definitions are being proposed for repeat hospitalizations, access site-related complications, bleeding events, conduction disturbances, cardiac structural complications, and bioprosthetic valve dysfunction and failure (including valve leaflet thickening and thrombosis). A more granular 5-class grading scheme for paravalvular regurgitation (PVR) is being proposed to help refine the assessment of PVR. Finally, more specific recommendations on quality-of-life assessments have been included, which have been targeted to specific clinical study designs.Conclusions Acknowledging the dynamic and evolving nature of less-invasive aortic valve therapies, further refinements of clinical research processes are required. The adoption of these updated and newly proposed VARC-3 endpoints and definitions will ensure homogenous event reporting, accurate adjudication, and appropriate comparisons of clinical research studies involving devices and new therapeutic strategies.Cardiolog

    Health Impairments in Children and Adolescents After Hospitalization for Acute COVID-19 or MIS-C

    Get PDF
    OBJECTIVES: To evaluate risk factors for postdischarge sequelae in children and adolescents hospitalized for acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome in children (MIS-C). METHODS: Multicenter prospective cohort study conducted in 25 United States pediatric hospitals. Patients <21-years-old, hospitalized May 2020 to May 2021 for acute COVID-19 or MIS-C with follow-up 2 to 4 months after admission. We assessed readmissions, persistent symptoms or activity impairment, and new morbidities. Multivariable regression was used to calculate adjusted risk ratios (aRR) and 95% confidence intervals (CI). RESULTS: Of 358 eligible patients, 2 to 4 month survey data were available for 119 of 155 (76.8%) with acute COVID-19 and 160 of 203 (78.8%) with MIS-C. Thirteen (11%) patients with acute COVID-19 and 12 (8%) with MIS-C had a readmission. Thirty-two (26.9%) patients with acute COVID-19 had persistent symptoms (22.7%) or activity impairment (14.3%) and 48 (30.0%) with MIS-C had persistent symptoms (20.0%) or activity impairment (21.3%). For patients with acute COVID-19, persistent symptoms (aRR, 1.29 [95% CI, 1.04-1.59]) and activity impairment (aRR, 1.37 [95% CI, 1.06-1.78]) were associated with more organ systems involved. Patients with MIS-C and pre-existing respiratory conditions more frequently had persistent symptoms (aRR, 3.09 [95% CI, 1.55-6.14]) and those with obesity more frequently had activity impairment (aRR, 2.52 [95% CI, 1.35-4.69]). New morbidities were infrequent (9% COVID-19, 1% MIS-C). CONCLUSIONS: Over 1 in 4 children hospitalized with acute COVID-19 or MIS-C experienced persistent symptoms or activity impairment for at least 2 months. Patients with MIS-C and respiratory conditions or obesity are at higher risk of prolonged recovery

    Changes in Distribution of Severe Neurologic Involvement in US Pediatric Inpatients With COVID-19 or Multisystem Inflammatory Syndrome in Children in 2021 vs 2020

    Get PDF
    Importance: In 2020 during the COVID-19 pandemic, neurologic involvement was common in children and adolescents hospitalized in the United States for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related complications. Objective: To provide an update on the spectrum of SARS-CoV-2-related neurologic involvement among children and adolescents in 2021. Design, Setting, and Participants: Case series investigation of patients reported to public health surveillance hospitalized with SARS-CoV-2-related illness between December 15, 2020, and December 31, 2021, in 55 US hospitals in 31 states with follow-up at hospital discharge. A total of 2253 patients were enrolled during the investigation period. Patients suspected of having multisystem inflammatory syndrome in children (MIS-C) who did not meet criteria (n = 85) were excluded. Patients (<21 years) with positive SARS-CoV-2 test results (reverse transcriptase-polymerase chain reaction and/or antibody) meeting criteria for MIS-C or acute COVID-19 were included in the analysis. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: Patients with neurologic involvement had acute neurologic signs, symptoms, or diseases on presentation or during hospitalization. Life-threatening neurologic involvement was adjudicated by experts based on clinical and/or neuroradiological features. Type and severity of neurologic involvement, laboratory and imaging data, vaccination status, and hospital discharge outcomes (death or survival with new neurologic deficits). Results: Of 2168 patients included (58% male; median age, 10.3 years), 1435 (66%) met criteria for MIS-C, and 476 (22%) had documented neurologic involvement. Patients with neurologic involvement vs without were older (median age, 12 vs 10 years) and more frequently had underlying neurologic disorders (107 of 476 [22%] vs 240 of 1692 [14%]). Among those with neurologic involvement, 42 (9%) developed acute SARS-CoV-2-related life-threatening conditions, including central nervous system infection/demyelination (n = 23; 15 with possible/confirmed encephalitis, 6 meningitis, 1 transverse myelitis, 1 nonhemorrhagic leukoencephalopathy), stroke (n = 11), severe encephalopathy (n = 5), acute fulminant cerebral edema (n = 2), and Guillain-Barré syndrome (n = 1). Ten of 42 (24%) survived with new neurologic deficits at discharge and 8 (19%) died. Among patients with life-threatening neurologic conditions, 15 of 16 vaccine-eligible patients (94%) were unvaccinated. Conclusions and Relevance: SARS-CoV-2-related neurologic involvement persisted in US children and adolescents hospitalized for COVID-19 or MIS-C in 2021 and was again mostly transient. Central nervous system infection/demyelination accounted for a higher proportion of life-threatening conditions, and most vaccine-eligible patients were unvaccinated. COVID-19 vaccination may prevent some SARS-CoV-2-related neurologic complications and merits further study

    Extracorporeal Membrane Oxygenation Characteristics and Outcomes in Children and Adolescents With COVID-19 or Multisystem Inflammatory Syndrome Admitted to U.S. ICUs

    Get PDF
    OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) has been used successfully to support adults with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related cardiac or respiratory failure refractory to conventional therapies. Comprehensive reports of children and adolescents with SARS-CoV-2-related ECMO support for conditions, including multisystem inflammatory syndrome in children (MIS-C) and acute COVID-19, are needed. Design: Case series of patients from the Overcoming COVID-19 public health surveillance registry. SETTING: Sixty-three hospitals in 32 U.S. states reporting to the registry between March 15, 2020, and December 31, 2021. PATIENTS: Patients less than 21 years admitted to the ICU meeting Centers for Disease Control criteria for MIS-C or acute COVID-19. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The final cohort included 2,733 patients with MIS-C (n = 1,530; 37 [2.4%] requiring ECMO) or acute COVID-19 (n = 1,203; 71 [5.9%] requiring ECMO). ECMO patients in both groups were older than those without ECMO support (MIS-C median 15.4 vs 9.9 yr; acute COVID-19 median 15.3 vs 13.6 yr). The body mass index percentile was similar in the MIS-C ECMO versus no ECMO groups (89.9 vs 85.8; p = 0.22) but higher in the COVID-19 ECMO versus no ECMO groups (98.3 vs 96.5; p = 0.03). Patients on ECMO with MIS-C versus COVID-19 were supported more often with venoarterial ECMO (92% vs 41%) for primary cardiac indications (87% vs 23%), had ECMO initiated earlier (median 1 vs 5 d from hospitalization), shorter ECMO courses (median 3.9 vs 14 d), shorter hospital length of stay (median 20 vs 52 d), lower in-hospital mortality (27% vs 37%), and less major morbidity at discharge in survivors (new tracheostomy, oxygen or mechanical ventilation need or neurologic deficit; 0% vs 11%, 0% vs 20%, and 8% vs 15%, respectively). Most patients with MIS-C requiring ECMO support (87%) were admitted during the pre-Delta (variant B.1.617.2) period, while most patients with acute COVID-19 requiring ECMO support (70%) were admitted during the Delta variant period. Conclusions: ECMO support for SARS-CoV-2-related critical illness was uncommon, but type, initiation, and duration of ECMO use in MIS-C and acute COVID-19 were markedly different. Like pre-pandemic pediatric ECMO cohorts, most patients survived to hospital discharge

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore