7 research outputs found

    A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the completion of the Human Genome Project and other rapid advances in genomics have led to increasing anticipation of an era of genomic and personalized medicine, in which an individual's health is optimized through the use of all available patient data, including data on the individual's genome and its downstream products. Genomic and personalized medicine could transform healthcare systems and catalyze significant reductions in morbidity, mortality, and overall healthcare costs.</p> <p>Discussion</p> <p>Critical to the achievement of more efficient and effective healthcare enabled by genomics is the establishment of a robust, nationwide clinical decision support infrastructure that assists clinicians in their use of genomic assays to guide disease prevention, diagnosis, and therapy. Requisite components of this infrastructure include the standardized representation of genomic and non-genomic patient data across health information systems; centrally managed repositories of computer-processable medical knowledge; and standardized approaches for applying these knowledge resources against patient data to generate and deliver patient-specific care recommendations. Here, we provide recommendations for establishing a national decision support infrastructure for genomic and personalized medicine that fulfills these needs, leverages existing resources, and is aligned with the <it>Roadmap for National Action on Clinical Decision Support </it>commissioned by the U.S. Office of the National Coordinator for Health Information Technology. Critical to the establishment of this infrastructure will be strong leadership and substantial funding from the federal government.</p> <p>Summary</p> <p>A national clinical decision support infrastructure will be required for reaping the full benefits of genomic and personalized medicine. Essential components of this infrastructure include standards for data representation; centrally managed knowledge repositories; and standardized approaches for leveraging these knowledge repositories to generate patient-specific care recommendations at the point of care.</p

    Personal Genome Project UK (PGP-UK): a research and citizen science hybrid project in support of personalized medicine

    Get PDF
    Background: Molecular analyses such as whole-genome sequencing have become routine and are expected to be transformational for future healthcare and lifestyle decisions. Population-wide implementation of such analyses is, however, not without challenges, and multiple studies are ongoing to identify what these are and explore how they can be addressed. Methods: Defined as a research project, the Personal Genome Project UK (PGP-UK) is part of the global PGP network and focuses on open data sharing and citizen science to advance and accelerate personalized genomics and medicine. Results: Here we report our findings on using an open consent recruitment protocol, active participant involvement, open access release of personal genome, methylome and transcriptome data and associated analyses, including 47 new variants predicted to affect gene function and innovative reports based on the analysis of genetic and epigenetic variants. For this pilot study, we recruited 10 participants willing to actively engage as citizen scientists with the project. In addition, we introduce Genome Donation as a novel mechanism for openly sharing previously restricted data and discuss the first three donations received. Lastly, we present GenoME, a free, open-source educational app suitable for the lay public to allow exploration of personal genomes. Conclusions: Our findings demonstrate that citizen science-based approaches like PGP-UK have an important role to play in the public awareness, acceptance and implementation of genomics and personalized medicine

    Genetic testing and common disorders in a public health framework: how to assess relevance and possibilities

    Get PDF
    This paper discusses genetic testing and common disorders from a health-care perspective. New possibilities for genetic testing confront health-care workers with the question of whom to test and which test to use. This document focuses on genetic testing and screening in common disorders. The term ¿common disorder¿ is used for disorders that individually have a high impact on public health.Examples of common disorders include cardiovascular disease (CVD), stroke, diabetes, cancer, dementia, and depression. For a health-care practitioner ¿ unlike a geneticist or an epidemiologist ¿ it may not be clear whether a common disorder is due to one gene with a high risk of serious disease, or due to a combination of several genes and several environmental factors. This document will not consider germline prenatal or preconceptional testing, nor testing of biomarkers for tumor recurrence, but it will discuss testing of mutations in tumor tissue, since this may reveal susceptibility to certain forms of therapy. Also, pharmacogenomic applications will not be discussed in depth, although some examples will be given of pharmacogenomic testing. The outlne is as following: First, the terrain of common complex disorders is introduced. Different assessment frames for genetic testing and screening are discussed. The section following that examines the aims and strategies for genetic testing and screening in common disorders and discusses some examples of current testing and screening in Europe. The section ¿The economic evaluation of genetic tests¿ discusses the cost¿benefit relation of different types of tests and screening strategies and how they could be used in the clinic in a cost-effective way. The subsequent section addresses the ethical, legal, and social issues of testing and screening in common disorders. The last section addresses regulatory and intellectual property issues in the EU as well as the United States.JRC.DDG.J.2-The economics of climate change, energy and transpor
    corecore