3,700 research outputs found

    Practice Makes Imperfect: Restorative Effects of Sleep on Motor Learning

    Get PDF
    Emerging evidence suggests that sleep plays a key role in procedural learning, particularly in the continued development of motor skill learning following initial acquisition. We argue that a detailed examination of the time course of performance across sleep on the finger-tapping task, established as the paradigm for studying the effect of sleep on motor learning, will help distinguish a restorative role of sleep in motor skill learning from a proactive one. Healthy subjects rehearsed for 12 trials and, following a night of sleep, were tested. Early training rapidly improved speed as well as accuracy on pre-sleep training. Additional rehearsal caused a marked slow-down in further improvement or partial reversal in performance to observed levels below theoretical upper limits derived on the basis of early pre-sleep rehearsal. This decrement in learning efficacy does not occur always, but if and only if it does, overnight sleep has an effect in fully or partly restoring the efficacy and actual performance to the optimal theoretically achieveable level. Our findings re-interpret the sleep-dependent memory enhancement in motor learning reported in the literature as a restoration of fatigued circuitry specialized for the skill. In providing restitution to the fatigued brain, sleep eliminates the rehearsal-induced synaptic fatigue of the circuitry specialized for the task and restores the benefit of early pre-sleep rehearsal. The present findings lend support to the notion that latent sleep-dependent enhancement of performance is a behavioral expression of the brain's restitution in sleep

    Time scale bias in erosion rates of glaciated landscapes

    Get PDF
    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time

    Low-gradient, single-threaded rivers prior to greening of the continents

    Get PDF
    The Silurian-age rise of land plants is hypothesized to have caused a global revolution in the mechanics of rivers. In the absence of vegetation-controlled bank stabilization effects, pre-Silurian rivers are thought to be characterized by shallow, multithreaded flows, and steep river gradients. This hypothesis, however, is at odds with the pancontinental scale of early Neoproterozoic river systems that would have necessitated extraordinarily high mountains if such river gradients were commonplace at continental scale, which is inconsistent with constraints on lithospheric thickness. To reconcile these observations, we generated estimates of paleogradients and morphologies of pre-Silurian rivers using a well-developed quantitative framework based on the formation of river bars and dunes. We combined data from previous work with original field measurements of the scale, texture, and structure of fluvial deposits in Proterozoic-age Torridonian Group, Scotland-a type-example of pancontinental, prevegetation fluvial systems. Results showed that these rivers were low sloping (gradients 10-5 to 10-4), relatively deep (4 to 15 m), and had morphology similar to modern, lowland rivers. Our results provide mechanistic evidence for the abundance of low gradient, single-threaded rivers in the Proterozoic eon, at a time well before the evolution and radiation of land plants-despite the absence of muddy and vegetated floodplains. Single-threaded rivers with stable floodplains appear to have been a persistent feature of our planet despite singular changes in its terrestrial biota

    Daytime Naps, Motor Memory Consolidation and Regionally Specific Sleep Spindles

    Get PDF
    BACKGROUND: Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. METHODOLOGY/PRINCIPAL FINDINGS: Two groups of subjects trained on a motor-skill task using their left hand – a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60–90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged–correlations that were not evident for either hemisphere alone. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain

    Does Sleep Really Influence Face Recognition Memory?

    Get PDF
    Mounting evidence implicates sleep in the consolidation of various kinds of memories. We investigated the effect of sleep on memory for face identity, a declarative form of memory that is indispensable for nearly all social interaction. In the acquisition phase, observers viewed faces that they were required to remember over a variable retention period (0–36 hours). In the test phase, observers viewed intermixed old and new faces and judged seeing each before. Participants were classified according to acquisition and test times into seven groups. Memory strength (d′) and response bias (c) were evaluated. Substantial time spent awake (12 hours or more) during the retention period impaired face recognition memory evaluated at test, whereas sleep per se during the retention period did little to enhance the memory. Wakefulness during retention also led to a tightening of the decision criterion. Our findings suggest that sleep passively and transiently shelters face recognition memory from waking interference (exposure) but does not actively aid in its long-term consolidation

    Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation

    Get PDF
    <div><p>Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in <i>Cftr<sup>F508del</sup></i> homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the <i>F508del-CFTR</i> mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from <i>F508del</i> homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both <i>in vivo</i>, in mice, and <i>in vitro</i>, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 <i>F508del-CFTR</i> homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells <i>in vivo</i>, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of <i>TNF/TNF-alpha (tumor necrosis factor)</i> and <i>CXCL8</i> (<i>chemokine [C-X-C motif] ligand 8</i>) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the <i>F508del-CFTR</i> mutation.</p></div

    Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands

    Get PDF
    "© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)

    Genetic diversity and population structure of Ascochyta rabiei from the western Iranian Ilam and Kermanshah provinces using MAT and SSR markers

    Get PDF
    Knowledge of genetic diversity in A. rabiei provides different levels of information that are important in the management of crop germplasm resources. Gene flow on a regional level indicates a significant potential risk for the regional spread of novel alleles that might contribute to fungicide resistance or the breakdown of resistance genes. Simple sequence repeat (SSR) and mating type (MAT) markers were used to determine the genetic structure, and estimate genetic diversity and the prevalence of mating types in 103 Ascochyta rabiei isolates from seven counties in the Ilam and Kermanshah provinces of western Iran (Ilam, Aseman abad, Holaylan, Chardavol, Dareh shahr, Gilangharb, and Sarpul). A set of 3 microsatellite primer pairs revealed a total of 75 alleles; the number of alleles varied from 15 to 34 for each marker. A high level of genetic variability was observed among A. rabiei isolates in the region. Genetic diversity was high (He = 0.788) within populations with corresponding high average gene flow and low genetic distances between populations. The smallest genetic distance was observed between isolates from Ilam and Chardavol. Both mating types were present in all populations, with the majority of the isolates belonging to Mat1-1 (64%), but within populations the proportions of each mating type were not significantly different from 50%. Results from this study will be useful in breeding for Ascochyta blight-resistant cultivars and developing necessary control measures

    Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer

    Get PDF
    BACKGROUND: Recent evidence suggests that bone-related parameters are the main prognostic factors for overall survival in advanced prostate cancer (PCa), with elevated circulating levels of alkaline phosphatase (ALP) thought to reflect the dysregulated bone formation accompanying distant metastases. We have identified that PCa cells express ALPL, the gene that encodes for tissue nonspecific ALP, and hypothesised that tumour-derived ALPL may contribute to disease progression. METHODS: Functional effects of ALPL inhibition were investigated in metastatic PCa cell lines. ALPL gene expression was analysed from published PCa data sets, and correlated with disease-free survival and metastasis. RESULTS: ALPL expression was increased in PCa cells from metastatic sites. A reduction in tumour-derived ALPL expression or ALP activity increased cell death, mesenchymal-to-epithelial transition and reduced migration. Alkaline phosphatase activity was decreased by the EMT repressor Snail. In men with PCa, tumour-derived ALPL correlated with EMT markers, and high ALPL expression was associated with a significant reduction in disease-free survival. CONCLUSIONS: Our studies reveal the function of tumour-derived ALPL in regulating cell death and epithelial plasticity, and demonstrate a strong association between ALPL expression in PCa cells and metastasis or disease-free survival, thus identifying tumour-derived ALPL as a major contributor to the pathogenesis of PCa progression.British Journal of Cancer advance online publication, 22 December 2016; doi:10.1038/bjc.2016.402 www.bjcancer.com
    • …
    corecore