47 research outputs found

    Diagnostic value of Pentraxin-3 in patients with sepsis and septic shock in accordance with latest sepsis-3 definitions

    Get PDF
    Background: Pentraxin-3 (PTX-3) is an acute-phase protein involved in inflammatory and infectious processes. This study assesses its diagnostic and prognostic value in patients with sepsis or septic shock in a medical intensive care unit (ICU). Methods: The study includes 213 ICU patients with clinical criteria of sepsis and septic shock. 77 donors served as controls. Plasma levels of PTX-3, procalcitonin (PCT) and interleukin-6 were measured on day 1, 3 and 8. Results: PTX-3 correlated with higher lactate levels as well as with APACHE II and SOFA scores (p = 0.0001). PTX-3 levels of patients with sepsis or septic shock were consistently significantly higher than in the control group (p ≤ 0.001). Plasma levels were able to discriminate sepsis and septic shock significantly on day 1, 3 and 8 (range of AUC 0.73–0.92, p = 0.0001). Uniform cut-off levels were defined at ≥5 ng/ml for at least sepsis, ≥9 ng/ml for septic shock (p = 0.0001). Conclusion: PTX-3 reveals diagnostic value for sepsis and septic shock during the first week of intensive care treatment, comparable to interleukin-6 according to latest Sepsis-3 definitions. Trial registration: NCT01535534. Registered 14.02.201

    Expansion of the Multi-Link Frontier™ Coronary Bifurcation Stent: Micro-Computed Tomographic Assessment in Human Autopsy and Porcine Heart Samples

    Get PDF
    BACKGROUND: Treatment of coronary bifurcation lesions remains challenging, beyond the introduction of drug eluting stents. Dedicated stent systems are available to improve the technical approach to the treatment of these lesions. However dedicated stent systems have so far not reduced the incidence of stent restenosis. The aim of this study was to assess the expansion of the Multi-Link (ML) Frontier™ stent in human and porcine coronary arteries to provide the cardiologist with useful in-vitro information for stent implantation and selection. METHODOLOGY/PRINCIPAL FINDINGS: Nine ML Frontier™ stents were implanted in seven human autopsy heart samples with known coronary artery disease and five ML Frontier™ stents were implanted in five porcine hearts. Proximal, distal and side branch diameters (PD, DD, SBD, respectively), corresponding opening areas (PA, DA, SBA) and the mean stent length (L) were assessed by micro-computed tomography (micro-CT). PD and PA were significantly smaller in human autopsy heart samples than in porcine heart samples (3.54±0.47 mm vs. 4.04±0.22 mm, p = 0.048; 10.00±2.42 mm(2) vs. 12.84±1.38 mm(2), p = 0.034, respectively) and than those given by the manufacturer (3.54±0.47 mm vs. 4.03 mm, p = 0.014). L was smaller in human autopsy heart samples than in porcine heart samples, although data did not reach significance (16.66±1.30 mm vs. 17.30±0.51 mm, p = 0.32), and significantly smaller than that given by the manufacturer (16.66±1.30 mm vs. 18 mm, p = 0.015). CONCLUSIONS/SIGNIFICANCE: Micro-CT is a feasible tool for exact surveying of dedicated stent systems and could make a contribution to the development of these devices. The proximal diameter and proximal area of the stent system were considerably smaller in human autopsy heart samples than in porcine heart samples and than those given by the manufacturer. Special consideration should be given to the stent deployment procedure (and to the follow-up) of dedicated stent systems, considering final intravascular ultrasound or optical coherence tomography to visualize (and if necessary optimize) stent expansion

    A complete set of nascent transcription rates for yeast genes

    Get PDF
    The amount of mRNA in a cell is the result of two opposite reactions: transcription and mRNA degradation. These reactions are governed by kinetics laws, and the most regulated step for many genes is the transcription rate. The transcription rate, which is assumed to be exercised mainly at the RNA polymerase recruitment level, can be calculated using the RNA polymerase densities determined either by run-on or immunoprecipitation using specific antibodies. The yeast Saccharomyces cerevisiae is the ideal model organism to generate a complete set of nascent transcription rates that will prove useful for many gene regulation studies. By combining genomic data from both the GRO (Genomic Run-on) and the RNA pol ChIP-on-chip methods we generated a new, more accurate nascent transcription rate dataset. By comparing this dataset with the indirect ones obtained from the mRNA stabilities and mRNA amount datasets, we are able to obtain biological information about posttranscriptional regulation processes and a genomic snapshot of the location of the active transcriptional machinery. We have obtained nascent transcription rates for 4,670 yeast genes. The median RNA polymerase II density in the genes is 0.078 molecules/kb, which corresponds to an average of 0.096 molecules/gene. Most genes have transcription rates of between 2 and 30 mRNAs/hour and less than 1% of yeast genes have >1 RNA polymerase molecule/gene. Histone and ribosomal protein genes are the highest transcribed groups of genes and other than these exceptions the transcription of genes is an infrequent phenomenon in a yeast cell

    Electrical modalities beyond pacing for the treatment of heart failure

    Get PDF
    In this review, we report on electrical modalities, which do not fit the definition of pacemaker, but increase cardiac performance either by direct application to the heart (e.g., post-extrasystolic potentiation or non-excitatory stimulation) or indirectly through activation of the nervous system (e.g., vagal or sympathetic activation). The physiological background of the possible mechanisms of these electrical modalities and their potential application to treat heart failure are discussed

    Redefining the MED13L syndrome

    Get PDF
    Congenital cardiac and neurodevelopmental deficits have been recently linked to the mediator complex subunit 13-like protein MED13L, a subunit of the CDK8-associated mediator complex that functions in transcriptional regulation through DNA-binding transcription factors and RNA polymerase II. Heterozygous MED13L variants cause transposition of the great arteries and intellectual disability (ID). Here, we report eight patients with predominantly novel MED13L variants who lack such complex congenital heart malformations. Rather, they depict a syndromic form of ID characterized by facial dysmorphism, ID, speech impairment, motor developmental delay with muscular hypotonia and behavioral difficulties. We thereby define a novel syndrome and significantly broaden the clinical spectrum associated with MED13L variants. A prominent feature of the MED13L neurocognitive presentation is profound language impairment, often in combination with articulatory deficits
    corecore