79 research outputs found

    Use of electrospinning to develop antimicrobial biodegradable multilayer systems: encapsulation of cinnamaldehyde and their physicochemical characterization

    Get PDF
    In this work, three active bio-based multilayer structures, using a polyhydroxybutyrate-co-valerate film with a valerate content of 8 % (PHBV8) as support, were developed. To this end, a zein interlayer with or without cinnamaldehyde (CNMA) was directly electrospun onto one side of the PHBV8 film and the following systems were developed: (1) without an outer layer; (2) using a PHBV8 film as outer layer; and (3) using an alginate-based film as outer layer. These multilayer structures were characterized in terms of water vapour and oxygen permeabilities, transparency, intermolecular arrangement and thermal properties. The antimicrobial activity of the active bio-based multilayer systems and the release of CNMA in a food simulant were also evaluated. Results showed that the presence of different outer layers reduced the transport properties and transparency of the multilayer films. The active bio-based multilayer systems showed antibacterial activity against Listeria monocytogenes being the multilayer structure prepared with CNMA and PHBV outer layers (PHBV + zein/CNMA + PHBV) the one that showed the greater antibacterial activity. The release of CNMA depended on the multilayer structures, where both Fick's and Case II transport-polymer relaxation explained the release of CNMA from the multilayer systems.Acknowledgments: Miguel A. Cerqueira (SFRH/BPD/72753/2010) andAnaI.Bourbon(SFRH/BD/73178/2010)arerecipientofafellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). J.L. Castro-Mayorga is supported by the Administrative Department of Science, Technology and Innovation (Colciencias) of Colombian Government. M. J. Fabra is a recipient of a Ramon y Cajal contract (RyC-2014-158) from the Spanish Ministry of Economy and Competitiveness. This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and of the Project RECI/BBB-EBI/ 0179/2012 (FCOMP-01-0124-FEDER-027462). The support of EU Cost Action MP1206 is gratefully acknowledged

    Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films

    Full text link
    In this study, antioxidant biodegradable films based on pea protein and alpha-tocopherol were successfully developed by solution casting. The effect of both the homogenization conditions (rotor stator and microfluidizer) and the relative humidity (RH) on the microstructure and physical properties (transparency, tensile, oxygen and water vapour barrier properties) of pea protein/alpha-tocopherol-based films was evaluated. The addition of alpha-tocopherol produced minimal changes in the films transparency, while providing them with antioxidant properties and improved water vapour and oxygen barrier properties (up to 30 % in both water vapour and oxygen permeability) when films were at low and intermediate RH. The addition of alpha-tocopherol in microfluidized films gave rise to an increase in their resistance to break and extensibility (up to 27 % in E values) at intermediate and high RH. These results add a new insight into the potential of employing pea protein and alpha-tocopherol in the development of fully biodegradable antioxidant films which are of interest in food packagingThe authors acknowledge the financial support from the Spanish Ministerio de Educacion y Ciencia throughout the project AGL2010-20694, co-funded by FEDER. Author M.J.Fabra is a recipient of a Juan de la Cierva contract from the Spanish Ministerio de Economia y Competitividad.Fabra, MJ.; Jiménez, A.; Talens Oliag, P.; Chiralt, A. (2014). Influence of homogenization conditions on physical properties and antioxidant activity of fully biodegradable pea protein-alpha-tocopherol films. Food and Bioprocess Technology. 7(12):3569-3578. https://doi.org/10.1007/s11947-014-1372-0S35693578712ASTM (1995). Standard test methods for water vapor transmission of materials. Standards Desingnations: E96-95. In: Annual Book of ASTM Standards (pp. 406-413); American Society for Testing and Materials: Philadelphia, PA.ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. In: Annual book of American Standard Testing Methods (pp 162-170). D882. Philadelphia:ASTM.Bertan, L. C., Tanada-Palmu, P. S., Siani, A. C., & Grosso, C. R. F. (2005). Effect of fatty acids and “Brazilian elemi” on composite films based on gelatin. Food Hydrocolloids, 19(1), 73–82.Byun, Y., Kim, Y. T., & Whiteside, S. (2010). Characterization of an antioxidant polylactic acid (PLA) film prepared with alpha-tocopherol, BHT and polyethylene glycol using film cast extruder. Journal of Food Engineering, 100, 239–244.Cerqueira, M. A., Costa, M. J., Fuciños, C., Pastrana, L. M., & Vicente, A. A. (2014). Development of active and nanotechnology-based smart edible packaging systems: physical-chemical characterization. Food and Bioprocess Technology, 7(5), 1472–1482.Choi, W. S., & Han, J. H. (2001). Physical and mechanical properties of pea–protein-based edible films. Journal of Food Science, 66, 319–322.Choi, W. S., & Han, J. H. (2002). Film-forming mechanism and heat denaturation effects on the physical and chemical properties of pea-protein-isolate edible films. Journal of Food Science, 67, 1399–1406.Fabra, M. J., Talens, P., & Chiralt, A. (2009). Microstructure and optical properties of sodium caseinate films containing oleic acidebeeswax mixtures. Food Hydrocolloids, 23, 676–683.Fabra, M. J., Talens, P., & Chiralt, A. (2010). Water sorption isotherms and phase transitions of sodium caseinate–lipid films as affected by lipid interactions. Food Hydrocolloids, 24, 384–391.Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids, 25, 1441–1447.Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109, 372–379.Frankel, E. N., Huang, S. W., Kanner, J., & German, J. B. (1994). Interfacial phenomena in the evaluation of antioxidants: bulk oils vs emulsions. Journal of Agriculture and Food Chemistry, 42(5), 1054–1059.Gómez-Estaca, J., Giménez, B., Montero, P., & Gómez-Guillén, M. C. (2009). Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering, 92, 78–85.Huang, S. W., Frankel, E. N., & German, J. B. (1994). Antioxidant activity of alpha.- and.gamma.-tocopherols in bulk oils and in oil-in-water emulsions. Journal of Agriculture and Food Chemistry, 42(10), 2108–2114.Hutchings, J. B. (1999). Food and colour appearance (2nd ed.). Gaithersburg: Chapman and Hall Food Science Book, Aspen Publication.Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2010). Effect of lipid self-association on the microstructure and physical properties of hydroxypropylmethylcellulose edible films containing fatty acids. Carbohydrate Polymers, 82(3), 585–593.Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013). Physical properties and antioxidant capacity of starch-sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695–702.Jung, M. Y., & Min, D. B. (1990). Effects of alpha-. γ-, and δ-tocopherols on oxidative stability of soybean oil. Journal of Food Science, 55(5), 1464–1465.López-de-Dicastillo, C., Alonso, J. M., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2010). Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. Journal of Agricultural and Food Chemistry, 58, 10958–10964.Ma, W., Tang, C.-H., Yin, S.-W., Yang, X. Q., Qi, J. R., & Xia, N. (2012). Effect of homogenization conditions on properties of gelatin-olive oil composite films. Journal of Food Engineering, 113(1), 136–142.Mauer, L. J., Smith, D. E., & Labuza, T. P. (2000). Water vapor permeability, mechanical, and structural properties of edible β-casein films. International Dairy Journal, 10(5–6), 353–358.Mc Hugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophobic edible films:modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903.McHugh, T. H., & Krochta, J. M. (1994). Dispersed phase particle size effects on water vapour permeability of whey protein–beeswax emulsion films. Journal of Food Processing and Preservation, 18, 173–188.Ozkan, G., Simsek, B., & Kuleasan, H. (2007). Antioxidant activities of Satureja cilicica essential oil in butter and in vitro. Journal of Food Engineering, 79, 1391–1396.Pereira de Abreu, D. A., Paseiro Losada, P., Maroto, J., & Cruz, J. M. (2011). Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innovative Food Science and Emerging Technologies, 12, 50–55.Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decoloration assay. Free Radical Biology and Medicine, 26, 1231–1237.Roos, Y. H. (1995). Phase transitions in food. San Diego: Academic Press.Salgado, P. R., Molina Ortiz, S. E., Petruccelli, S., & Mauri, A. N. (2010). Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocolloids, 24(5), 525–533.Salgado, P. R., Fernández, G. B., Drago, S. R., & Mauri, A. N. (2011). Addition of bovine plasma hydrolysates improves the antioxidant properties of soybean and sunflower protein-based films. Food Hydrocolloids, 25, 1433–1440.Samaranayaka, A. G. P., & Li-Chan, E. C. Y. (2008). Autolysis-assisted production of fish protein hydrolysates with antioxidant properties form Pacific hake (Merluccius productus). Food Chemistry, 107, 768–776.Souza, B. W. S., Cerqueira, A., Casariego, A., Lima, A. M. P., Teixeira, J. A., & Vicente, A. A. (2009). Effect of moderate electric fields in the permeation properties of chitosan coatings. Food Hydrocolloids, 23, 2110–2115

    Utilization of galactomannan from Gleditsia triacanthos in polysaccharide-based films : effects of interactions between film constituents on film properties

    Get PDF
    The objective of this work was to evaluate the effect of the concentrations of Gleditsia triacanthos galactomannan and glycerol and the presence of corn oil in the physical properties of edible films. The influence of interactions between those constituents on films' permeability to gases (water vapour, CO2 and O2), solubility in water, mechanical properties and colour was evaluated. The effects of those variables were analysed according to a 23 factorial design; regression coefficients were used to understand the influence of each variable (factor) on the studied properties, and a multifactor model was developed. Results show that galactomannan concentration is the most significant factor affecting the studied properties; moreover, the increase of plasticizer concentration and the presence of oil showed to be the most influent in the particular cases of solubility and transport properties (water vapour permeability and O2 permeability), respectively. These results show that galactomannan films' properties can be tailored to allow their use as alternative to non-biodegradable, non-edible packaging materials.The author M. A. Cerqueira is recipient of a fellowship from Fundacao para a Ciencia e Tecnologia (FCT, SFRH/BPD/72753/2010) and B. W. S. Souza is a recipient of a fellowship from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazil (Capes, Brazil)

    Algal MIPs, high diversity and conserved motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes.</p> <p>Results</p> <p>A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one <it>MIP </it>gene but only a few species encoded MIPs belonging to more than one subfamily.</p> <p>Conclusions</p> <p>Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca<sup>2+ </sup>gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.</p

    Effect of chitosan essential oil films on the storage-keeping quality of pork meat products

    Full text link
    Edible films based on chitosan were prepared, with and without basil or thyme essential oils, with the aim of assessing their protective ability against lipid oxidation and their antimicrobial activity. Chitosan films had good oxygenbarrier properties, which were worsened by essential oil addition, especially when the film equilibrium moisture content increased. Due to the oxygen-barrier effect, all the films effectively protected pork fat from oxidation, in comparison to unprotected samples. In spite of the worsening of the oxygen-barrier properties, the films with essential oils were more effective than those of pure chitosan, which points to the chemical action of specific antioxidant compounds of the oils. Films were effective to control microbial growth in minced pork meat, although the incorporation of essential oils did not improve their antimicrobial activity. Throughout the storage, the films led to colour changes in minced pork meat associated with the conversion of myoglobin into metmyoglobin due to the reduction of the oxygen availability.The authors acknowledge the financial support provided by the Universitat Politecnica de Valencia (PAID-06-09-2834), Generalitat Valenciana (GV/2010/082) and Ministerio de Educacion y Ciencia (AGL2010-20694). Author J. Bonilla is deeply grateful to Generalitat Valenciana for a Santiago Grisolia Grant.Bonilla Lagos, MJ.; Vargas, M.; Atarés Huerta, LM.; Chiralt Boix, MA. (2014). Effect of chitosan essential oil films on the storage-keeping quality of pork meat products. Food and Bioprocess Technology. 7(8):2443-2450. https://doi.org/10.1007/s11947-014-1329-3S2443245078ASTM D3985. (1995). Standard test method for oxygen gas transmission rate through plastic films and sheeting using a coulometric sensor. West Conshohocken: American Society for Testing and Materials.Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104, 649–656.Aureli, P., Costantini, A., & Zolea, S. (1992). Antimicrobial activity of some plant essential oils against Listeria monocytogenes. Journal of Food Protection, 55, 344–348.Baranauskiene, R., Venskutoni, S. P. R., Viskelis, P., & Dambrauskiene, E. (2003). Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). Journal of Agricultural and Food Chemistry, 51, 7751–7758.Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012a). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: possibilities and limitations. Journal of Food Engineering, 110, 208–213.Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012b). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26, 9–16.Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.Burt, S. A., & Reinders, R. D. (2003). Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology, 36, 162–167.Caner, C., Vergano, P. J., & Wiles, J. L. (1998). Chitosan film mechanical and permeation properties as affected by acid, plasticizer and storage. Journal of Food Science, 63, 1049–1053.Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., et al. (2009). Chitosan/clay ‘films properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23, 1895–1902.Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: possibilities and limitations. International Dairy Journal, 14, 273–285.Di Pasqua, R., Hoskins, N., Betts, G., & Mauriello, G. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde and eugenol in the growing media. Journal of Agricultural and Food Chemistry, 54, 2745–2749.Di Pierro, P., Sorrentino, A., Mariniello, L., Giosafatto, C. V. L., & Porta, R. (2011). Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT--Food Science and Technology, 44, 2324–2327.Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109(3), 372–379.Gaysinsky, S., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Growth inhibition of E. Coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. Journal of Food Protection, 68, 2559–2566.Govaris, A., Botsoglou, E., Sergelidis, D., & Chatzopoulou, P. D. (2011). Antibacterial activity of oregano and thyme essential oils against Listeria monocytogenes and Escherichia coli O157:H7 in feta cheese packaged under modified atmosphere. LWT - Food Science and Technology, 44, 1240–1244.Han, J. H., & Gennadios, A. (2005). Edible films and coatings: a review. In J. H. Han (Ed.), Innovations in Food Packaging (pp. 39–262). Oxford: Elsevier Academic.Kim, J., Marshall, M. R., & Wei, C. I. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43, 2839–2845.Labuza, T. P. (1980). The effect of water activity on reaction kinetics of food deterioration. Food Technology, 34, 36–41.Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71, 100–121.Moure, A., Cruz, J. M., Franco, D., Dominguez, J. M., Sineiro, J., Dominguez, H., et al. (2001). Natural antioxidants from residual sources. Food Chemistry, 72, 145–171.Rao, M. S., Chander, R., & Sharma, A. (2005). Development of shelf-stable intermediate moisture meat products using active edible chitosan coating and irradiation. Journal of Food Science, 70, 325–331.Salame, M. (1986). Barrier polymers. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 48–54). New York: Wiley.Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98, 443–452.Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011a). Use of essential oils in bioactive edible coatings. Food Engineering Reviews, 3, 1–16.Sánchez-González, L., Cháfer, M., Hernández, M., Chiralt, A., & González-Martínez, C. (2011b). Antimicrobial activity of polysaccharide films containing essential oils. Food Control, 22, 1302–1310.Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639–644.Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53, 7749–7759.Singh, B., Falahee, M. B., & Adams, M. R. (2001). Synergistic inhibition of Listeria monocytogenes by nisin and garlic extract. Food Microbioliology, 18, 133–139.Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41, 164–171.Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23, 536–547.Vargas, M., Albors, A., & Chiralt, A. (2011). Application of chitosan-sunflower oil edible films to pork meat hamburgers. Procedia Food Science, 1, 39–43.Wan, J., Wilcock, A., & Coventry, M. J. (1998). The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. Journal of Applied Microbiology, 84, 152–158.Zivanovic, S., Chi, S., & Draughon, F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70, 45–51

    Effects of interactions between the constituents of chitosan-edible films on their physical properties

    Get PDF
    The main objective of this work was to evaluate the effect of chitosan and plasticizer concentrations and oil presence on the physical and mechanical properties of edible films. The effect of the film constituents and their in-between interactions were studied through the evaluation of permeability, opacity and mechanical properties. The effects of the studied variables (concentrations of chitosan, plasticizer and oil) were analysed according to a 2 3 factorial design. Pareto charts were used to identify the most significant factors in the studied properties (water vapour, oxygen and carbon dioxide permeability; opacity; tensile strength; elongation at break and Young's modulus). When addressing the influence of the interactions between the films' constituents on the properties above, results show that chitosan and plasticizer concentrations are the most significant factors affecting most of the studied properties, while oil incorporation has shown to be of a great importance in the particular case of transport properties (gas permeability), essentially due to its hydrophobicity. Water vapour permeability values (ranging from 1. 62 × 10 -11 to 4. 24 × 10 -11 g m -1 s -1 Pa -1) were half of those reported for cellophane films. Also the mechanical properties (tensile strength values from 0. 43 to 13. 72 MPa and elongation-at-break values from 58. 62% to 166. 70%) were in the range of those reported for LDPE and HDPE. Based on these results, we recommend the use of 1. 5% (w/w) chitosan concentration to produce films, where the oil and plasticizer proportions will have to be adjusted in a case-by-case basis according to the use intended for the material. This work provides a useful guide to the formulation of chitosan-based film-forming solutions for food packaging applications.The author MA Cerqueira is a recipient of a fellowship from Fundacao para a Ciencia e Tecnologia (FCT, SFRH/BD/23897/2005) and BWS Souza is a recipient of a fellowship from the Coordenacao Aperfeicoamento de Pessoal de Nivel Superior, Brazil (Capes, Brazil)

    Enhancement of PLA-PVA surface adhesion in bilayer assemblies by PLA aminolisation

    Get PDF
    Data Availability: The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.Poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) present complementary barrier properties, and their combination in multilayer assemblies (laminates) could provide materials with more effective barrier capacity for food packaging purposes. However, their low chemical affinity compromises adequate polymer adhesion. Surface free energy modification of thermo-processed PLA films through treatment with 1,6-hexanediamine was used to enhance adhesion with polar PVA aqueous solutions. Treatments of 1 and 3 min increased the polar component of the solid surface tension, while treatments above 10 min provoked a corrosive effect in the films structure. Extensibility analyses of PVA solutions loaded with carvacrol (15 wt.%) and different Tween 85 ratios on PLA-activated surfaces allowed the selection of the 1-min aminolysed surface for obtaining PLA-PVA bilayers, by casting PVA solutions on the PLA films. This study revealed that despite aminolisation enhancing the PLA surface affinity for aqueous PVA solutions, casting-obtained bilayers presented limited oxygen barrier effectiveness due to heterogeneous thickness of PVA layer in the laminates.The authors acknowledge the financial support provided by the Ministerio de Economia y Competitividad (MINECO) of Spain (project AGL2016-76699-R). The author A. Tampau thanks MINECO for the pre-doctoral research grant #BES-2014-068100.info:eu-repo/semantics/publishedVersio

    MUC4 mucin expression in human pancreatic tumours is affected by organ environment: the possible role of TGFβ2

    Get PDF
    MUC4 is highly expressed in human pancreatic tumours and pancreatic tumour cell lines, but is minimally or not expressed in normal pancreas or chronic pancreatitis. Here, we investigated the aberrant regulation of MUC4 expression in vivo using clonal human pancreatic tumour cells (CD18/HPAF) grown either orthotopically in the pancreas (OT) or ectopically in subcutaneous tissue (SC) in the nude mice. Histological examination of the OT and SC tumours showed moderately differentiated and anaplastic morphology, respectively. The OT tumour cells showed metastases to distant lymph nodes and faster tumour growth (

    Considerations about quality in model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11219-016-9350-6The virtue of quality is not itself a subject; it depends on a subject. In the software engineering field, quality means good software products that meet customer expectations, constraints, and requirements. Despite the numerous approaches, methods, descriptive models, and tools, that have been developed, a level of consensus has been reached by software practitioners. However, in the model-driven engineering (MDE) field, which has emerged from software engineering paradigms, quality continues to be a great challenge since the subject is not fully defined. The use of models alone is not enough to manage all of the quality issues at the modeling language level. In this work, we present the current state and some relevant considerations regarding quality in MDE, by identifying current categories in quality conception and by highlighting quality issues in real applications of the model-driven initiatives. We identified 16 categories in the definition of quality in MDE. From this identification, by applying an adaptive sampling approach, we discovered the five most influential authors for the works that propose definitions of quality. These include (in order): the OMG standards (e.g., MDA, UML, MOF, OCL, SysML), the ISO standards for software quality models (e.g., 9126 and 25,000), Krogstie, Lindland, and Moody. We also discovered families of works about quality, i.e., works that belong to the same author or topic. Seventy-three works were found with evidence of the mismatch between the academic/research field of quality evaluation of modeling languages and actual MDE practice in industry. We demonstrate that this field does not currently solve quality issues reported in industrial scenarios. The evidence of the mismatch was grouped in eight categories, four for academic/research evidence and four for industrial reports. These categories were detected based on the scope proposed in each one of the academic/research works and from the questions and issues raised by real practitioners. We then proposed a scenario to illustrate quality issues in a real information system project in which multiple modeling languages were used. For the evaluation of the quality of this MDE scenario, we chose one of the most cited and influential quality frameworks; it was detected from the information obtained in the identification of the categories about quality definition for MDE. We demonstrated that the selected framework falls short in addressing the quality issues. Finally, based on the findings, we derive eight challenges for quality evaluation in MDE projects that current quality initiatives do not address sufficiently.F.G, would like to thank COLCIENCIAS (Colombia) for funding this work through the Colciencias Grant call 512-2010. This work has been supported by the Gene-ralitat Valenciana Project IDEO (PROMETEOII/2014/039), the European Commission FP7 Project CaaS (611351), and ERDF structural funds.Giraldo-Velásquez, FD.; España Cubillo, S.; Pastor López, O.; Giraldo, WJ. (2016). Considerations about quality in model-driven engineering. Software Quality Journal. 1-66. https://doi.org/10.1007/s11219-016-9350-6S166(1985). Iso information processing—documentation symbols and conventions for data, program and system flowcharts, program network charts and system resources charts. ISO 5807:1985(E) (pp. 1–25).(2011). Iso/iec/ieee systems and software engineering – architecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000) (pp. 1–46).Abran, A., Moore, J.W., Bourque, P., Dupuis, R., & Tripp, L.L. (2013). Guide to the Software Engineering Body of Knowledge (SWEBOK) version 3 public review. IEEE. ISO Technical Report ISO/IEC TR 19759.Agner, L.T.W., Soares, I.W., Stadzisz, P.C., & Simão, J.M. (2013). A brazilian survey on {UML} and model-driven practices for embedded software development. Journal of Systems and Software, 86(4), 997–1005. {SI} : Software Engineering in Brazil: Retrospective and Prospective Views.Amstel, M.F.V. (2010). The right tool for the right job: assessing model transformation quality. pages 69–74. Affiliation: Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands. Cited By (since 1996):1.Aranda, J., Damian, D., & Borici, A. (2012). Transition to model-driven engineering: what is revolutionary, what remains the same?. In Proceedings of the 15th international conference on model driven engineering languages and systems, MODELS’12 (pp. 692–708). Berlin, Heidelberg: Springer.Arendt, T., & Taentzer, G. (2013). A tool environment for quality assurance based on the eclipse modeling framework. Automated Software Engineering, 20(2), 141–184.Atkinson, C., Bunse, C., & Wüst, J. (2003). Driving component-based software development through quality modelling, volume 2693. Cited By (since 1996):3.Baker, P., Loh, S., & Weil, F. (2005). Model-driven engineering in a large industrial context—motorola case study. In Briand, L., & Williams, C. (Eds.) Model Driven Engineering Languages and Systems, volume 3713 of Lecture Notes in Computer Science (pp. 476–491). Berlin, Heidelberg: Springer.Barišić, A., Amaral, V., Goulão, M., & Barroca, B. (2011). Quality in use of domain-specific languages: a case study. In Proceedings of the 3rd ACM SIGPLAN workshop on evaluation and usability of programming languages and tools, PLATEAU ’11 (pp. 65–72). New York: ACM.Becker, J., Bergener, P., Breuker, D., & Rackers, M. (2010). Evaluating the expressiveness of domain specific modeling languages using the bunge-wand-weber ontology. In 2010 43rd Hawaii international conference on system sciences (HICSS) (pp. 1–10).Bertrand Portier, L.A. (2009). Model driven development misperceptions and challenges.Bézivin, J., & Kurtev, I. (2005). Model-based technology integration with the technical space concept. In Proceedings of the Metainformatics Symposium: Springer.Brambilla, M. (2016). How mature is of model-driven engineering as an engineering discipline @ONLINE.Brambilla, M., & Fraternali, P. (2014). Large-scale model-driven engineering of web user interaction: The webml and webratio experience. Science of Computer Programming, 89 Part B(0), 71 – 87. Special issue on Success Stories in Model Driven Engineering.Brown, A. (2009). Simple and practical model driven architecture (mda) @ONLINE.Bruel, J.-M., Combemale, B., Ober, I., & Raynal, H. (2015). Mde in practice for computational science. Procedia Computer Science, 51, 660–669.Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., & Pretorius, R. (2011). Empirical evidence about the uml: a systematic literature review. Software: Practice and Experience, 41(4), 363–392.Burden, H., Heldal, R., & Whittle, J. (2014). Comparing and contrasting model-driven engineering at three large companies. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’14 (pp. 14:1–14:10). New York: ACM.Cabot, J. Has mda been abandoned (by the omg)?Cabot, J. (2009). Modeling will be commonplace in three years time @ONLINE.Cachero, C., Poels, G., Calero, C., & Marhuenda, Y. (2007). Towards a Quality-Aware Engineering Process for the Development of Web Applications. Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/462, Ghent University, Faculty of Economics and Business Administration.Challenger, M., Kardas, G., & Tekinerdogan, B. (2015). A systematic approach to evaluating domain-specific modeling language environments for multi-agent systems. Software Quality Journal, 1–41.Chaudron, M.V., Heijstek, W., & Nugroho, A. (2012). How effective is uml modeling? Software & Systems Modeling, 11(4), 571–580. J2: Softw Syst Model.Chenouard, R., Granvilliers, L., & Soto, R. (2008). Model-driven constraint programming. pages 236–246. Affiliation: CNRS, LINA, Universit de Nantes, France; Affiliation: Pontificia Universidad Catlica de, Valparaiso, Chile. Cited By (since 1996):8.Clark, T., & Muller, P.-A. (2012). Exploiting model driven technology: a tale of two startups. Software and Systems Modeling, 11(4), 481–493.Corneliussen, L. (2008). What do you think of model-driven software development?Costal, D., Gómez, C., & Guizzardi, G. (2011). Formal semantics and ontological analysis for understanding subsetting, specialization and redefinition of associations in uml. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6998 LNCS:189–203. cited By (since 1996)3.Cruz-Lemus, J.A., Maes, A., Género, M., Poels, G., & Piattini, M. (2010). The impact of structural complexity on the understandability of uml statechart diagrams. Information Sciences, 180(11), 2209–2220. Cited By (since 1996):14.Cuadrado, J.S., Izquierdo, J.L.C., & Molina, J.G. (2014). Applying model-driven engineering in small software enterprises. Science of Computer Programming, 89 Part B(0), 176 – 198. Special issue on Success Stories in Model Driven Engineering.Da Silva, A.R. (2015). Model-driven engineering: a survey supported by the unified conceptual model. Computer Languages Systems and Structures, 43, 139–155.Da Silva Teixeira, D.G.M., Quirino, G.K., Gailly, F., De Almeida Falbo, R., Guizzardi, G., & Perini Barcellos, M. (2016). PoN-S: a Systematic Approach for Applying the Physics of Notation (PoN), (pp. 432–447). Cham: Springer International Publishing.Davies, I., Green, P., Rosemann, M., Indulska, M., & Gallo, S. (2006). How do practitioners use conceptual modeling in practice? Data and Knowledge Engineering, 58(3), 358 – 380. Including the special issue : {ER} 2004ER 2004.Davies, J., Milward, D., Wang, C.-W., & Welch, J. (2015). Formal model-driven engineering of critical information systems. Science of Computer Programming, 103(0), 88 – 113. Selected papers from the First International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2012).De Oca, I.M.-M., Snoeck, M., Reijers, H.A., & Rodríguez-Morffi, A. (2015). A systematic literature review of studies on business process modeling quality. Information and Software Technology, 58, 187–205.DenHaan, J. (2009). 8 reasons why model driven development is dangerous @ONLINE.DenHaan, J. (2010). Model driven engineering vs the commando pattern @ONLINE.DenHaan, J. (2011a). Why aren’t we all doing model driven development yet @ONLINE.DenHaan, J. (2011b). Why there is no future model driven development @ONLINE.Di Ruscio, D., Iovino, L., & Pierantonio, A. (2013). Managing the coupled evolution of metamodels and textual concrete syntax specifications. cited By (since 1996)0.Dijkman, R.M., Dumas, M., & Ouyang, C. (2008). Semantics and analysis of business process models in {BPMN}. Information and Software Technology, 50(12), 1281–1294.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ramos, I., & Fernández, L. (2011). A framework for the quality evaluation of mdwe methodologies and information technology infrastructures. International Journal of Human Capital and Information Technology Professionals, 2(4), 11–22.Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., & Torres, A.H. (2010). A quality model in a quality evaluation framework for mdwe methodologies. pages 495–506. Affiliation: Departamento de Lenguajes y Sistemas Informíticos, University of Seville, Seville, Spain., Cited By (since 1996):1.Dubray, J.-J. (2011). Why did mde miss the boat?.Escalona, M.J., Gutiérrez, J.J., Pérez-Pérez, M., Molina, A., Domínguez-Mayo, E., & Domínguez-Mayo, F.J. (2011). Measuring the Quality of Model-Driven Projects with NDT-Quality, (pp. 307–317). New York: Springer.Espinilla, M., Domínguez-Mayo, F.J., Escalona, M.J., Mejías, M., Ross, M., & Staples, G. (2011). A Method Based on AHP to Define the Quality Model of QuEF (Vol. 123, pp. 685–694). Berlin, Heidelberg: Springer.Fabra, J., Castro, V.D., Álvarez, P., & Marcos, E. (2012). Automatic execution of business process models: exploiting the benefits of model-driven engineering approaches. Journal of Systems and Software, 85(3), 607–625. Novel approaches in the design and implementation of systems/software architecture.Falkenberg, E.D., Hesse, W., Lindgreen, P., Nilsson, B.E., Oei, J.L.H., Rolland, C., Stamper, R.K., Assche, F.J.M.V., Verrijn-Stuart, A.A., & Voss, K. (1996). Frisco: a framework of information system concepts. Technical report, The IFIP WG 8. 1 Task Group FRISCO.Fettke, P., Houy, C., Vella, A.-L., & Loos, P. (2012). Towards the Reconstruction and Evaluation of Conceptual Model Quality Discourses – Methodical Framework and Application in the Context of Model Understandability, volume 113 of Lecture Notes in Business Information Processing, chapter 28, pages 406–421, Springer, Berlin, Heidelberg.Finnie, S. (2015). Modeling community: Are we missing something?Fournier, C. (2008). Is uml [email protected], R., & Rumpe, B. (2007). Model-driven development of complex software: a research roadmap. In Future of Software Engineering, 2007, FOSE ’07 (pp. 37–54).Gallego, M., Giraldo, F.D., & Hitpass, B. (2015). Adapting the pbec-otss software selection approach for bpm suites: an application case. In 2015 34th International Conference of the Chilean Computer Science Society (SCCC) (pp. 1–10).Galvão, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven engineering. cited By (since 1996)22.Giraldo, F., España, S., Giraldo, W., & Pastor, O. (2015). Modelling language quality evaluation in model-driven information systems engineering: a roadmap. In 2015 IEEE 9th International Conference on Research Challenges in Information Science (RCIS) (pp. 64–69).Giraldo, F., España, S., & Pastor, O. (2014). Analysing the concept of quality in model-driven engineering literature: a systematic review. In 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS) (pp. 1–12).Giraldo, F.D., España, S., & Pastor, O. (2016). Evidences of the mismatch between industry and academy on modelling language quality evaluation. arXiv: 1606.02025 .González, C., & Cabot, J. (2014). Formal verification of static software models in mde: a systematic review. Information and Software Technology, 56(8), 821–838. cited By (since 1996)0.González, C.A., Büttner, F., Clarisó, R., & Cabot, J. (2012). Emftocsp: a tool for the lightweight verification of emf models. pages 44–50. Affiliation: cole des Mines de Nantes, INRIA, LINA, Nantes, France; Affiliation: Universitat Oberta de Catalunya, Barcelona, Spain. Cited By (since 1996):1.Gorschek, T., Tempero, E., & Angelis, L. (2014). On the use of software design models in software development practice: an empirical investigation. Journal of Systems and Software, 95(0), 176– 193.Goulão, M., Amaral, V., & Mernik, M. (2016). Quality in model-driven engineering: a tertiary study. Software Quality Journal, 1–33.Grobshtein, Y., & Dori, D. (2011). Generating sysml views from an opm model: design and evaluation. Systems Engineering, 14(3), 327–340.Haan, J.d. (2008). 8 reasons why model-driven approaches (will) fail.Harel, D., & Rumpe, B. (2000). Modeling languages: Syntax, semantics and all that stuff, part i: The basic stuff, Israel. Technical report Jerusalem Israel.Harel, D., & Rumpe, B. (2004). Meaningful modeling: what’s the semantics of semantics? Computer, 37(10), 64–72.Hebig, R., & Bendraou, R. (2014). On the need to study the impact of model driven engineering on software processes. In Proceedings of the 2014 International Conference on Software and System Process, ICSSP 2014 (pp. 164–168). New York: ACM.Heidari, F., & Loucopoulos, P. (2014). Quality evaluation framework (qef): modeling and evaluating quality of business processes. International Journal of Accounting Information Systems, 15(3), 193–223. Business Process Modeling.Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R., & Classen, A. (2008). Evaluating formal properties of feature diagram languages. Software, IET, 2(3), 281–302. ID 2.Hindawi, M., Morel, L., Aubry, R., & Sourrouille, J.-L. (2009). Description and Implementation of a UML Style Guide (Vol. 5421, pp. 291–302). Berlin: Springer.Hoang, D. (2012). Current limitations of mdd and its implications @ONLINE.Hodges, W. (2013). Model theory Zalta, E.N. (Ed.) The Stanford Encyclopedia of Philosophy. Fall 2013 edition.Hutchinson, J., Rouncefield, M., & Whittle, J. (2011a). Model-driven engineering practices in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 633–642). New York: ACM.Hutchinson, J., Whittle, J., & Rouncefield, M. (2014). Model-driven engineering practices in industry: social, organizational and managerial factors that lead to success or failure. Science of Computer Programming, 89 Part B(0), 144–161. Special issue on Success Stories in Model Driven Engineering.Hutchinson, J., Whittle, J., Rouncefield, M., & Kristoffersen, S. (2011b). Empirical assessment of mde in industry. In Proceedings of the 33rd International Conference on Software Engineering, ICSE’11 (pp. 471–480). New York: ACM.Igarza, I.M.H., Boada, D.H.G., & Valdés, A.P. (2012). Una introducción al desarrollo de software dirigido por modelos. Serie Científica, 5(3).ISO/IEC (2001). ISO/IEC 9126. Software engineering—Product quality. ISO/IEC.Izurieta, C., Rojas, G., & Griffith, I. (2015). Preemptive management of model driven technical debt for improving software quality. In Proceedings of the 11th International ACM SIGSOFT Conference on Quality of Software Architectures, QoSA’15 (pp. 31–36). New York: ACM.Jalali, S., & Wohlin, C. (2012). Systematic literature studies: Database searches vs. backward snowballing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM’12 (pp. 29–38). New York: ACM.Kahraman, G., & Bilgen, S. (2013). A framework for qualitative assessment of domain-specific languages. Software & Systems Modeling, 1–22.Kessentini, M., Langer, P., & Wimmer, M. (2013). Searching models, modeling search: On the synergies of sbse and mde (pp. 51–54).Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report.Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering, 28(8), 721–734.Klinke, M. (2008). Do you use mda/mdd/mdsd, any kind of model-driven approach? Will it be the future?Köhnlein, J. (2013). Eclipse diagram editors from a user’s perspective.Kolovos, D.S., Paige, R.F., & Polack, F.A. (2008). The grand challenge of scalability for model driven engineering. In Models in Software Engineering (pp. 48–53): Springer.Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M., & Cabot, J. (2013). A research roadmap towards achieving scalability in model driven engineering. In Proceedings of the Workshop on Scalability in Model Driven Engineering, BigMDE’13 (pp. 2:1–2:10). New York: ACM.Krill, P. (2016). Uml to be ejected from microsoft visual studio (infoworld).Krogstie, J. (2012a). Model-based development and evolution of information systems: a quality approach, Springer Publishing Company, Incorporated.Krogstie, J. (2012b). Quality of modelling languages, (pp. 249–280). London: Springer.Krogstie, J. (2012c). Quality of models, (pp. 205–247). London: Springer.Krogstie, J. (2012d). Specialisations of SEQUAL, (pp. 281–326). London: Springer.Krogstie, J., Lindland, O.I., & Sindre, G. (1995). Defining quality aspects for conceptual models. In Proceedings of the IFIP International Working Conference on Information System Concepts: Towards a Consolidation of Views (pp. 216–231). London: Chapman & Hall, Ltd.Kruchten, P. (2000). The rational unified process: an introduction, 2nd edn. Boston: Addison-Wesley Longman Publishing Co., Inc.Kruchten, P., Nord, R., & Ozkaya, I. (2012). Technical debt: from metaphor to theory and practice. Software, IEEE, 29(6), 18–21.Kulkarni, V., Reddy, S., & Rajbhoj, A. (2010). Scaling up model driven engineering – experience and lessons learnt. In Petriu, D., Rouquette, N., & Haugen, y. (Eds.) Model Driven Engineering Languages and Systems, volume 6395 of Lecture Notes in Computer Science (pp. 331–345). Berlin, Heidelberg: Springer.Laguna, M.A., & Marqués, J.M. (2010). Uml support for designing software product lines: the package merge mechanism, 16(17), 2313–2332.Lange, C. (2007a). Model size matters. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4364 LNCS:211–216. cited By (since 1996)1.Lange, C., & Chaudron, M. (2005). Managing Model Quality in UML-Based Software Development. In 13th IEEE International Workshop on Technology and Engineering Practice, 2005 (pp. 7–16).Lange, C., Chaudron, M.R.V., Muskens, J., Somers, L.J., & Dortmans, H.M. (2003). An empirical investigation in quantifying inconsistency and incompleteness of uml designs. In Incompleteness of UML Designs, Proceedings Workshop on Consistency Problems in UML-based Software Development, 6th International Conference on Unified Modeling Language, UML, 2003.Lange, C., DuBois, B., Chaudron, M., & Demeyer, S. (2006). An experimental investigation of uml modeling conventions. In Nierstrasz, O., Whittle, J., Harel, D., & Reggio, G. (Eds.) Model Driven Engineering Languages and Systems, volume 4199 of Lecture Notes in Computer Science (pp. 27–41). Berlin, Heidelberg: Springer.Lange, C.F.J., & Chaudron, M.R.V. (2006). Effe

    Vertebrate Vitellogenin Gene Duplication in Relation to the “3R Hypothesis”: Correlation to the Pelagic Egg and the Oceanic Radiation of Teleosts

    Get PDF
    The spiny ray-finned teleost fishes (Acanthomorpha) are the most successful group of vertebrates in terms of species diversity. Their meteoric radiation and speciation in the oceans during the late Cretaceous and Eocene epoch is unprecedented in vertebrate history, occurring in one third of the time for similar diversity to appear in the birds and mammals. The success of marine teleosts is even more remarkable considering their long freshwater ancestry, since it implies solving major physiological challenges when freely broadcasting their eggs in the hyper-osmotic conditions of seawater. Most extant marine teleosts spawn highly hydrated pelagic eggs, due to differential proteolysis of vitellogenin (Vtg)-derived yolk proteins. The maturational degradation of Vtg involves depolymerization of mainly the lipovitellin heavy chain (LvH) of one form of Vtg to generate a large pool of free amino acids (FAA 150–200 mM). This organic osmolyte pool drives hydration of the ooctye while still protected within the maternal ovary. In the present contribution, we have used Bayesian analysis to examine the evolution of vertebrate Vtg genes in relation to the “3R hypothesis” of whole genome duplication (WGD) and the functional end points of LvH degradation during oocyte maturation. We find that teleost Vtgs have experienced a post-R3 lineage-specific gene duplication to form paralogous clusters that correlate to the pelagic and benthic character of the eggs. Neo-functionalization allowed one paralogue to be proteolyzed to FAA driving hydration of the maturing oocytes, which pre-adapts them to the marine environment and causes them to float. The timing of these events matches the appearance of the Acanthomorpha in the fossil record. We discuss the significance of these adaptations in relation to ancestral physiological features, and propose that the neo-functionalization of duplicated Vtg genes was a key event in the evolution and success of the teleosts in the oceanic environment
    corecore