8 research outputs found

    Analysis of the differential cross sections for the reaction pp --> ppK+K- in view of the K+K- interaction

    Get PDF
    Measurements of the pp-->ppK+K- reaction, performed with the experiment COSY-11 at the Cooler Synchrotron COSY, show a significant difference between the obtained excitation function and theoretical expectations including pp-FSI >. The discrepancy may be assigned to the influence of K+K- or K-p interaction. This interaction should manifest itself in the distributions of the differential cross section. This thesis presents an analysis of event distributions as a function of the invariant masses of two particle subsystems. In particular in the analysis two generalizations of the Dalitz plot proposed by Goldhaber and Nyborg are used. The present Investigations are based on the experimental data determined by the COSY-11 collaboration from two measurements at excess energies of Q = 10 MeV and 28 MeV. The experimental distributions are compared to results of Monte Carlo simulations generated with various parameters of the K+K- and K-p interaction. The values of the K+K- scattering length, extracted from two data sets for Q = 10 MeV and 28 MeV amount to: a_K+K- = (11 +- 8) + i(0 +- 6) fm for Q = 10 MeV, and a_K+K- = (0.2 +-0.2) + i(0.0 +- 0.5) fm for Q = 28 MeV, Due to the low statistics, the extracted values have large uncertainties and are consistent with very low values of the real and imaginary part of the scattering length.Comment: Master Thesis prepared in the Nuclear Physics Division of the Jagiellonian University; 37 pages, 19 figure

    kaonic atoms experiment at the daφne collider by siddharta siddharta 2

    Get PDF
    The excellent quality kaon beam provided by the DA\PhiΦNE collider of LNF-INFN (Italy) together with SIDDHARTA/SIDDHARTA-2 new experimental techniques, as very precise and fast-response X-ray detectors, allow to perform unprecedented measurements on light kaonic atoms crucial for a deeper understanding of the low-energy quantum chromodynamics (QCD) in the strangeness sector. In this paper an overview of the main results obtained by the SIDDHARTA collaboration, as well as the future plans related to the SIDDHARTA-2 experiment, are discussed

    A novel approach to the measurement of the hyperon nucleon/s interaction by AMADEUS

    No full text
    The AMADEUS collaboration is investigating the low-energy antikaon interactions with nucleons and nuclei, taking advantage of the lowmomentum antikaons beam provided by the DAΦNE collider at LNF-INFN. In this work a novel technique is outlined for the measurement of the hyperonnucleon two and three body scattering cross sections. The method consists in producing hyperons by antikaons atomic captures in light nuclear targets, and extrapolating the cross sections from the measurement of the yields of the corresponding elastic final state interactions of the hyperons. The feasibility of this kind of analyses is shown by comparison of calculated Σ0 production in 4He by K− absorption on three nucleons, with a sample of K−12C absorption measured by AMADEUS in collaboration with KLOE. The feasibility of a dedicated high statistics measurement is discussed

    Studies of kaonic atoms at the DAΦNE collider: from SIDDHARTA to SIDDHARTA-2

    Get PDF
    The DAΦNE electron-positron collider of the Laboratori Nazionali di Frascati of INFN is a worldwide unique low-energy kaon source and for this reason is suitable for low-energy kaon physics like kaonic atoms and kaon-nucleons/nuclei interaction studies. Kaonic atoms are atomic systems where an electron is replaced by a negatively charged kaon, containing the strange quark, which interacts in the lowest orbits with the nucleus also by the strong interaction. As a result, their study offers the unique opportunity to perform experiments equivalent to scattering at vanishing relative energy. This allows to study the strong interaction between the antikaon and the nucleon or the nucleus “at threshold”, without the need of ad hoc extrapolation to zero energy, as in scattering experiments. The most precise kaonic hydrogen measurement to date, together with an exploratory measurement of kaonic deuterium, were carried out by the SIDDHARTA collaboration at the DAΦNE electron-positron collider of LNF-INFN, by combining the excellent quality kaon beam delivered by the collider with new experimental techniques, as fast and precise Silicon-Drift X-ray Detectors. The measurement of kaonic deuterium will be realized in the near future by SIDDHARTA-2, a major upgrade of SIDDHARTA

    X-ray Detectors for Kaonic Atoms Research at DAΦNE

    No full text
    This article presents the kaonic atom studies performed at the INFN National Laboratory of Frascati (Laboratori Nazionali di Frascati dell’INFN, LNF-INFN) since the opening of this field of research at the DA Φ NE collider in early 2000. Significant achievements have been obtained by the DA Φ NE Exotic Atom Research (DEAR) and Silicon Drift Detector for Hadronic Atom Research by Timing Applications (SIDDHARTA) experiments on kaonic hydrogen, which have required the development of novel X-ray detectors. The 2019 installation of the new SIDDHARTA-2 experiment to measure kaonic deuterium for the first time has been made possible by further technological advances in X-ray detection
    corecore