396 research outputs found

    New analysis of the SN 1987A neutrinos with a flexible spectral shape

    Get PDF
    We analyze the neutrino events from the supernova (SN) 1987A detected by the Kamiokande II (KII) and Irvine-Michigan-Brookhaven (IMB) experiments. For the time-integrated flux we assume a quasi-thermal spectrum of the form (E/E0)αe(α+1)E/E0(E/E_0)^\alpha e^{-(\alpha+1)E/E_0} where α\alpha plays the role of a spectral index. This simple representation not only allows one to fit the total energy EtotE_{\rm tot} emitted in νˉe\bar\nu_e and the average energy , but also accommodates a wide range of shapes, notably anti-pinched spectra that are broader than a thermal distribution. We find that the pile-up of low-energy events near threshold in KII forces the best-fit value for $\alpha$ to the lowest value of any assumed prior range. This applies to the KII events alone as well as to a common analysis of the two data sets. The preference of the data for an ``unphysical'' spectral shape implies that one can extract meaningful values for and EtotE_{\rm tot} only if one fixes a prior value for α\alpha. The tension between the KII and IMB data sets and theoretical expectations for is not resolved by an anti-pinched spectrum.Comment: to appear in PRD (6 pages, 6 eps figures

    Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields

    Get PDF
    Very-high energy photons emitted by distant cosmic sources are absorbed on the extragalactic background light (EBL) during their propagation. This effect can be characterized in terms of a photon transfer function at Earth. The presence of extragalactic magnetic fields could also induce conversions between very high-energy photons and hypothetical axion-like particles (ALPs). The turbulent structure of the extragalactic magnetic fields would produce a stochastic behaviour in these conversions, leading to a statistical distribution of the photon transfer functions for the different realizations of the random magnetic fields. To characterize this effect, we derive new equations to calculate the mean and the variance of this distribution. We find that, in presence of ALP conversions, the photon transfer functions on different lines of sight could have relevant deviations with respect to the mean value, producing both an enhancement or a suppression in the observable photon flux with respect to the expectations with only absorption. As a consequence, the most striking signature of the mixing with ALPs would be a reconstructed EBL density from TeV photon observations which appears to vary over different directions of the sky: consistent with standard expectations in some regions, but inconsistent in others.Comment: v2: 22 pages, 5 eps figures. Minor changes. A reference added. Matches the version published on JCA

    Oscillations of solar atmosphere neutrinos

    Get PDF
    The Sun is a source of high energy neutrinos (E > 10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged ``vacuum'' oscillations, dominated by a single mixing parameter (the angle theta_23).Comment: v2: 11 pages, 8 eps figures. Content added (Sec. III D and Fig. 6), references updated. Matches the published versio

    Axion-like particle effects on the polarization of cosmic high-energy gamma sources

    Get PDF
    Various satellite-borne missions are being planned whose goal is to measure the polarization of a large number of gamma-ray bursts (GRBs). We show that the polarization pattern predicted by current models of GRB emission can be drastically modified by the existence of very light axion-like particles (ALPs), which are present in many extensions of the Standard Model of particle physics. Basically, the propagation of photons emitted by a GRB through cosmic magnetic fields with a domain-like structure induces photon-ALP mixing, which is expected to produce a strong modification of the original photon polarization. Because of the random orientation of the magnetic field in each domain, this effect strongly depends on the orientation of the photon line of sight. As a consequence, photon-ALP conversion considerably broadens the original polarization distribution. Searching for such a peculiar feature through future high-statistics polarimetric measurements is therefore a new opportunity to discover very light ALPs.Comment: Final version (21 pages, 8 eps figures). Matches the version published on JCAP. Added a Section on the effects of cosmic expansion on photon-ALP conversions. Figures modified to take into account this effect. References updated. Conclusions unchanged

    Metric-like Lagrangian Formulations for Higher-Spin Fields of Mixed Symmetry

    Full text link
    We review the structure of local Lagrangians and field equations for free bosonic and fermionic gauge fields of mixed symmetry in flat space. These are first presented in a constrained setting extending the metric formulation of linearized gravity, and then the (γ\gamma-)trace constraints on fields and gauge parameters are eliminated via the introduction of auxiliary fields. We also display the emergence of Weyl-like symmetries in particular classes of models in low space-time dimensions.Comment: 136 pages, LaTeX. References added. Final version to appear in La Rivista del Nuovo Cimento

    Lifestyle Modification: Evaluation of the Effects of Physical Activity and Low-Glycemic-Index Mediterranean Diet on Fibrosis Score

    Get PDF
    Background: Non-Alcoholic Fatty Liver Disease (NAFLD) is one the most prevalent causes of chronic liver disease worldwide. In the absence of an approved drug treatment, lifestyle modification is the first intervention strategy. This study aimed to estimate the main effect of two different physical activity (PA) programs, and a Low-Glycemic-Index Mediterranean Diet (LGIMD), or their combined effect on liver fibrosis parameters in subjects with NAFLD. Methods: Subjects with moderate or severe NAFLD grade of severity (n = 144) were randomly assigned to six intervention arms for three months: LGIMD, PA programs, and their combination. Data were collected at baseline, 45 days, and 90 days. Transient elastography was performed to assess the outcome. Results: at 90 days, a statistically significant reduction in kPa was found among subjects following LGMID (−2.85, 95% CI −5.24, −0.45) and those following an LGIMD plus PA1 (−2.37, 95% CI −4.39, −0.35) and LGIMD plus Pa2 (−2.21, 95% CI −4.10, −0.32). The contrast between time 2 and time 1 of the LGIMD plus PA2 treatment showed a statistically significant increase, and vice versa: the contrast between time 3 and time 2 of the same treatment showed a statistically significant reduction. The PA1 and PA2 arms also showed reduced kPa, although the results did not reach statistical significance. Conclusions: The intervention arms, LGIMD, LGIMD+PA1, and LGIMD+PA2, reduced the fibrosis score

    Constraints on the CMB temperature redshift dependence from SZ and distance measurements

    Full text link
    The relation between redshift and the CMB temperature, TCMB(z)=T0(1+z)T_{CMB}(z)=T_0(1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the Λ\LambdaCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form TCMB(z)=T0(1+z)1βT_{CMB}(z)=T_0(1+z)^{1-\beta} to be β=0.004±0.016\beta=0.004\pm0.016 up to a redshift z3z\sim 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude.Comment: 27 pages, 11 figure

    Exploring nu signals in dark matter detectors

    Full text link
    We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments each the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino--electron and neutrino--nucleus scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.Comment: 38 pages, 8 figures, 1 table; v3: eq 3 and nuclear recoil plots corrected, footnote added, conclusions unchange

    A complete 3D numerical study of the effects of pseudoscalar-photon mixing on quasar polarizations

    Full text link
    We present the results of three-dimensional simulations of quasar polarizations in the presence of pseudoscalar-photon mixing in the intergalactic medium. The intergalactic magnetic field is assumed to be uncorrelated in wave vector space but correlated in real space. Such a field may be obtained if its origin is primordial. Furthermore we assume that the quasars, located at cosmological distances, have negligible initial polarization. In the presence of pseudoscalar-photon mixing we show, through a direct comparison with observations, that this may explain the observed large scale alignments in quasar polarizations within the framework of big bang cosmology. We find that the simulation results give a reasonably good fit to the observed data.Comment: 15 pages, 8 figures, significant changes, to appear in EPJ

    Comparison of electrohysterogram signal measured by surface electrodes with different designs: A computational study with dipole band and abdomen models

    Get PDF
    Non-invasive measurement of uterine activity using electrohysterogram (EHG) surface electrodes has been attempted to monitor uterine contraction. This study aimed to computationally compare the performance of acquiring EHG signals using monopolar electrode and three types of Laplacian concentric ring electrodes (bipolar, quasi-bipolar and tri-polar). With the implementation of dipole band model and abdomen model, the performances of four electrodes in terms of the local sensitivity were quantifed by potential attenuation. Furthermore, the efects of fat and muscle thickness on potential attenuation were evaluated using the bipolar and tri-polar electrodes with diferent radius. The results showed that all the four types of electrodes detected the simulated EHG signals with consistency. That the bipolar and tri-polar electrodes had greater attenuations than the others, and the shorter distance between the origin and location of dipole band at 20dB attenuation, indicating that they had relatively better local sensitivity. In addition, ANOVA analysis showed that, for all the electrodes with diferent outer ring radius, the efects of fat and muscle on potential attenuation were signifcant (all p<0.01). It is therefore concluded that the bipolar and tri-polar electrodes had higher local sensitivity than the others, indicating that they can be applied to detect EHG efectively
    corecore