674 research outputs found
Superconducting Vortices and Elliptical Ferromagnetic Textures
In this article an analytical and numerical study of superconducting thin
film with ferromagnetic textures of elliptical geometries in close proximity is
presented. The screening currents induced in the superconductor due to the
magnetic texture are calculated. Close to the superconducting transition
temperature the spontaneous creation of superconducting vortices becomes
energy favorable depending on the value of the magnetization and the
geometrical quantities of the magnetic texture. The creation of vortices by
elliptic dots is more energy favorable than those created by circular ones. The
superconductor covered by elliptic dots array exhibits anisotropic transport
properties.Comment: 4 pages, 5figure
Generalized Farey trees, transfer Operators and phase transitions
We consider a family of Markov maps on the unit interval, interpolating
between the tent map and the Farey map. The latter map is not uniformly
expanding. Each map being composed of two fractional linear transformations,
the family generalizes many particular properties which for the case of the
Farey map have been successfully exploited in number theory. We analyze the
dynamics through the spectral analysis of generalized transfer operators.
Application of the thermodynamic formalism to the family reveals first and
second order phase transitions and unusual properties like positivity of the
interaction function.Comment: 39 pages, 10 figure
A Taylor Model Based Description of the proof stress of magnesium AZ31 during hot working
A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, ⟨c+a⟩ second-order pyramidal slip, and { } twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ∼150 °C and ∼450 °C, depending on the texture, strain rate, and strain path
An Equation of State of a Carbon-Fibre Epoxy Composite under Shock Loading
An anisotropic equation of state (EOS) is proposed for the accurate
extrapolation of high-pressure shock Hugoniot (anisotropic and isotropic)
states to other thermodynamic (anisotropic and isotropic) states for a shocked
carbon-fibre epoxy composite (CFC) of any symmetry. The proposed EOS, using a
generalised decomposition of a stress tensor [Int. J. Plasticity \textbf{24},
140 (2008)], represents a mathematical and physical generalisation of the
Mie-Gr\"{u}neisen EOS for isotropic material and reduces to this equation in
the limit of isotropy. Although a linear relation between the generalised
anisotropic bulk shock velocity and particle velocity was
adequate in the through-thickness orientation, damage softening process
produces discontinuities both in value and slope in the -
relation. Therefore, the two-wave structure (non-linear anisotropic and
isotropic elastic waves) that accompanies damage softening process was proposed
for describing CFC behaviour under shock loading. The linear relationship
- over the range of measurements corresponding to non-linear
anisotropic elastic wave shows a value of (the intercept of the
- curve) that is in the range between first and second
generalised anisotropic bulk speed of sound [Eur. Phys. J. B \textbf{64}, 159
(2008)]. An analytical calculation showed that Hugoniot Stress Levels (HELs) in
different directions for a CFC composite subject to the two-wave structure
(non-linear anisotropic elastic and isotropic elastic waves) agree with
experimental measurements at low and at high shock intensities. The results are
presented, discussed and future studies are outlined.Comment: 12 pages, 9 figure
A limit model for thermoelectric equations
We analyze the asymptotic behavior corresponding to the arbitrary high
conductivity of the heat in the thermoelectric devices. This work deals with a
steady-state multidimensional thermistor problem, considering the Joule effect
and both spatial and temperature dependent transport coefficients under some
real boundary conditions in accordance with the Seebeck-Peltier-Thomson
cross-effects. Our first purpose is that the existence of a weak solution holds
true under minimal assumptions on the data, as in particular nonsmooth domains.
Two existence results are studied under different assumptions on the electrical
conductivity. Their proofs are based on a fixed point argument, compactness
methods, and existence and regularity theory for elliptic scalar equations. The
second purpose is to show the existence of a limit model illustrating the
asymptotic situation.Comment: 20 page
High strain-rate material model validation for laser peening simulation
Finite element modeling can be a powerful tool for predicting residual stresses induced by laser peening; however the sign and magnitude of the stress predictions depend strongly on how the material model captures the high strain rate response. Although a Johnson-Cook formulation is often employed, its suitability for modeling phenomena at very high strain rates has not been rigorously evaluated. In this paper, we address the effectiveness of the Johnson-Cook model, with parameters developed from lower strain rate material data (∼10^3 s^–1), to capture the higher strain rate response (∼10^5–10^6 s^–1) encountered during the laser peening process. Published Johnson-Cook parameters extracted from split Hopkinson bar testing were used to predict the shock response of aluminum samples during high-impact flyer plate tests. Additional quasi-static and split Hopkinson bar tests were also conducted to study the model response in the lower strain rate regime. The overall objective of the research was to ascertain whether a material model based on conventional test data (quasi-static compression testing and split Hopkinson bar measurements) can credibly be used in FE simulations to predict laser peen-induced stresses
Quasiconvexity at the boundary and the nucleation of austenite
Motivated by experimental observations of H. Seiner et al., we study the nucleation of austenite in a single crystal of a CuAlNi shape-memory alloy stabilized as a single variant of martensite. In the experiments the nucleation process was induced by localized heating and it was observed that, regardless of where the localized heating was applied, the nucleation points were always located at one of the corners of the sample - a rectangular parallelepiped in the austenite. Using a simplified nonlinear elasticity model, we propose an explanation for the location of the nucleation points by showing that the martensite is a local minimizer of the energy with respect to localized variations in the interior, on faces and edges of the sample, but not at some corners, where a localized microstructure, involving austenite and a simple laminate of martensite, can lower the energy. The result for the interior, faces and edges is established by showing that the free-energy function satisfies a set of quasiconvexity conditions at the stabilized variant in the interior, faces and edges, respectively, provided the specimen is suitably cut
Mechanical Behavior and Microstructural Development of Low-Carbon Steel and Microcomposite Steel Reinforcement Bars Deformed under Quasi-Static and Dynamic Shear Loading
Reinforcement bars of microcomposite (MC) steel, composed of lath martensite and minor amounts of retained austenite, possess improved strength and corrosion characteristics over low-carbon (LC) steel rebar; however, their performance under shear loading has not previously been investigated at the microstructural level. In this study, LC and MC steel cylinders were compression tested, and specimens machined into a forced-shear geometry were subjected to quasi-static and dynamic shear loading to determine their shear behavior as a function of the strain and strain rate. The as-received and sheared microstructures were examined using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). Higher-resolution microstructural examinations were performed using transmission electron microscopy (TEM). The influence of the starting microstructure on the shear behavior was found to depend strongly on the strain rate; the MC steel exhibited not only greater strain-rate sensitivity than the LC steel but also a greater resistance to shear localization with load. In both steels, despite differences in the starting microstructure, post-mortem observations were consistent with a continuous mechanism operating within adiabatic shear bands (ASBs), in which subgrains rotated into highly misoriented grains containing a high density of dislocations
- …