9,771 research outputs found

    Geometry, stochastic calculus and quantum fields in a non-commutative space-time

    Full text link
    The algebras of non-relativistic and of classical mechanics are unstable algebraic structures. Their deformation towards stable structures leads, respectively, to relativity and to quantum mechanics. Likewise, the combined relativistic quantum mechanics algebra is also unstable. Its stabilization requires the non-commutativity of the space-time coordinates and the existence of a fundamental length constant. The new relativistic quantum mechanics algebra has important consequences on the geometry of space-time, on quantum stochastic calculus and on the construction of quantum fields. Some of these effects are studied in this paper.Comment: 36 pages Latex, 1 eps figur

    Lie Superalgebra Stability and Branes

    Full text link
    The algebra of the generators of translations in superspace is unstable, in the sense that infinitesimal perturbations of its structure constants lead to non-isomorphic algebras. We show how superspace extensions remedy this situation (after arguing that remedy is indeed needed) and review the benefits reaped in the description of branes of all kinds in the presence of the extra dimensions.Comment: Talk given at the conference ``Brane New World and Non-commutative Geometry'', held in Torino, October 2000. To appear in the proceedings by World Scientific. 10 pages, 1 figur

    A história da certificação ISO 9001 da Embrapa Meio Ambiente.

    Get PDF
    bitstream/item/40190/1/Documentos-84.pd

    Teaching Laminar-flow reactors: From experimentation to CFD simulation

    Get PDF
    An integrated chemical engineering lab experiment is described in this paper. It makes use of a laminar-flow tubular reactor (LFTR) through consecutive lab sessions. In a first session (not described here), the pseudo first-order kinetic constant for the reaction between crystal violet and sodium hydroxide is determined at different temperatures in a batch reactor. Then a tracer experiment is used to characterize the flow, pattern in the LFTR, and finally the steady-state conversion of crystal violet in the reactor is measured. For computing the theoretical reactor conversion, students must use the previously collected kinetic and tracer data, in a concept-integration exercise. A computational fluid dynamics (CFD) code (Fluent) is also used to simulate both the tracer and the isothermal reaction experiments performed in the LFTR. A very good agreement is obtained between experimental and simulated results and both only differ slightly from the theoretical predictions. The use of the CFD program is particularly noteworthy. For instance, transient simulations allow a very nice visualization of the tracer concentration front evolution, while the steady-state profiles along the axial position provide a good perspective of how reactant concentration varies within the reactor

    Gender gap in the ERASMUS mobility program

    Full text link
    Studying abroad has become very popular among students. The ERASMUS mobility program is one of the largest international student exchange programs in the world, which has supported already more than three million participants since 1987. We analyzed the mobility pattern within this program in 2011-12 and found a gender gap across countries and subject areas. Namely, for almost all participating countries, female students are over-represented in the ERASMUS program when compared to the entire population of tertiary students. The same tendency is observed across different subject areas. We also found a gender asymmetry in the geographical distribution of hosting institutions, with a bias of male students in Scandinavian countries. However, a detailed analysis reveals that this latter asymmetry is rather driven by subject and consistent with the distribution of gender ratios among subject areas
    corecore