The algebras of non-relativistic and of classical mechanics are unstable
algebraic structures. Their deformation towards stable structures leads,
respectively, to relativity and to quantum mechanics. Likewise, the combined
relativistic quantum mechanics algebra is also unstable. Its stabilization
requires the non-commutativity of the space-time coordinates and the existence
of a fundamental length constant. The new relativistic quantum mechanics
algebra has important consequences on the geometry of space-time, on quantum
stochastic calculus and on the construction of quantum fields. Some of these
effects are studied in this paper.Comment: 36 pages Latex, 1 eps figur