146 research outputs found
Efficacy of Thermotherapy to Treat Cutaneous Leishmaniasis Caused by Leishmania tropica in Kabul, Afghanistan: A Randomized, Controlled Trial
BACKGROUND: Pentavalent antimony is the agent recommended for treatment of cutaneous leishmaniasis (CL). Its use is problematic, because it is expensive and because of the potential for drug-associated adverse effects during a lengthy and painful treatment course.
METHODS: We tested the efficacy of thermotherapy for the treatment of CL due to Leishmania tropica in a randomized, controlled trial in Kabul, Afghanistan. We enrolled 401 patients with a single CL lesion and administered thermotherapy using radio-frequency waves (1 treatment of ≥1 consecutive application at 50°C for 30 s) or sodium stibogluconate (SSG), administered either intralesionally (a total of 5 injections of 25 mL every 57 days, depending on lesion size) or intramuscularly (20 mg/kg daily for 21 days).
RESULTS: Cure, defined as complete reepithelialization at 100 days after treatment initiation, was observed in 75 (69.4%) of 108 patients who received thermotherapy, 70 (75.3%) of 93 patients who received intralesional SSG, and 26 (44.8%) of 58 patients who received intramuscular SSG. The OR for cure with thermotherapy was 2.80 (95% confidence interval [CI], 1.455.41), compared with intramuscular SSG treatment (P = .002). No statistically significant difference was observed in the odds of cure in comparison of intralesional SSG and thermotherapy treatments. The OR for cure with intralesional SSG treatment was 3.75 (95% CI, 1.867.54), compared with intramuscular SSG treatment (P 100 days, respectively; P = .003).
CONCLUSIONS: Thermotherapy is an effective, comparatively well-tolerated, and rapid treatment for CL, and it should be considered as an alternative to antimony treatment
Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol
BACKGROUND: In vitro and animal experiments have shown that the transport and signaling of beta2-adrenergic agonists are pH-sensitive. Inhaled albuterol, a hydrophilic beta2-adrenergic agonist, is widely used for the treatment of obstructive airway diseases. Acute exacerbations of obstructive airway diseases can be associated with changes in ventilation leading to either respiratory acidosis or alkalosis thereby affecting albuterol responsiveness in the airway. The purpose of this study was to determine if airway pH has an effect on albuterol-induced vasodilation in the airway. METHODS: Ten healthy volunteers performed the following respiratory maneuvers: quiet breathing, hypocapnic hyperventilation, hypercapnic hyperventilation, and eucapnic hyperventilation (to dissociate the effect of pH from the effect of ventilation). During these breathing maneuvers, exhaled breath condensate (EBC) pH and airway blood flow response to inhaled albuterol (DeltaQaw) were assessed. RESULTS: Mean +/- SE EBC pH (units) and DeltaQaw (mul.min(-1).mL(-1)) were 6.4 +/- 0.1 and 16.8 +/- 1.9 during quiet breathing, 6.3 +/- 0.1 and 14.5 +/- 2.4 during eucapnic hyperventilation, 6.6 +/- 0.2 and -0.2 +/- 1.8 during hypocapnic hyperventilation (p = 0.02 and <0.01 vs. quiet breathing), and 5.9 +/- 0.1 and 2.0 +/- 1.5 during hypercapnic hyperventilation (p = 0.02 and <0.02 vs quiet breathing). CONCLUSIONS: Albuterol responsiveness in the airway as assessed by DeltaQaw is pH sensitive. The breathing maneuver associated with decreased and increased EBC pH both resulted in a decreased responsiveness independent of the level of ventilation. These findings suggest an attenuated response to hydrophilic beta2-adrenergic agonists during airway disease exacerbations associated with changes in pH. TRIAL REGISTRATION: Registered at clinicaltrials.gov: NCT01216748
Unexpected Role for Helicobacter pylori DNA Polymerase I As a Source of Genetic Variability
Helicobacter pylori, a human pathogen infecting about half of the world population, is characterised by its large intraspecies variability. Its genome plasticity has been invoked as the basis for its high adaptation capacity. Consistent with its small genome, H. pylori possesses only two bona fide DNA polymerases, Pol I and the replicative Pol III, lacking homologues of translesion synthesis DNA polymerases. Bacterial DNA polymerases I are implicated both in normal DNA replication and in DNA repair. We report that H. pylori DNA Pol I 5′- 3′ exonuclease domain is essential for viability, probably through its involvement in DNA replication. We show here that, despite the fact that it also plays crucial roles in DNA repair, Pol I contributes to genomic instability. Indeed, strains defective in the DNA polymerase activity of the protein, although sensitive to genotoxic agents, display reduced mutation frequencies. Conversely, overexpression of Pol I leads to a hypermutator phenotype. Although the purified protein displays an intrinsic fidelity during replication of undamaged DNA, it lacks a proofreading activity, allowing it to efficiently elongate mismatched primers and perform mutagenic translesion synthesis. In agreement with this finding, we show that the spontaneous mutator phenotype of a strain deficient in the removal of oxidised pyrimidines from the genome is in part dependent on the presence of an active DNA Pol I. This study provides evidence for an unexpected role of DNA polymerase I in generating genomic plasticity
Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast
Acknowledgments We thank Rebecca Shapiro for creating CaLC1819, CaLC1855 and CaLC1875, Gillian Milne for help with EM, Aaron Mitchell for generously providing the transposon insertion mutant library, Jesus Pla for generously providing the hog1 hst7 mutant, and Cathy Collins for technical assistance.Peer reviewedPublisher PD
Identification and Characterization of Antifungal Compounds Using a Saccharomyces cerevisiae Reporter Bioassay
New antifungal drugs are urgently needed due to the currently limited selection, the emergence of drug resistance, and the toxicity of several commonly used drugs. To identify drug leads, we screened small molecules using a Saccharomyces cerevisiae reporter bioassay in which S. cerevisiae heterologously expresses Hik1, a group III hybrid histidine kinase (HHK) from Magnaporthe grisea. Group III HHKs are integral in fungal cell physiology, and highly conserved throughout this kingdom; they are absent in mammals, making them an attractive drug target. Our screen identified compounds 13 and 33, which showed robust activity against numerous fungal genera including Candida spp., Cryptococcus spp. and molds such as Aspergillus fumigatus and Rhizopus oryzae. Drug-resistant Candida albicans from patients were also highly susceptible to compounds 13 and 33. While the compounds do not act directly on HHKs, microarray analysis showed that compound 13 induced transcripts associated with oxidative stress, and compound 33, transcripts linked with heavy metal stress. Both compounds were highly active against C. albicans biofilm, in vitro and in vivo, and exerted synergy with fluconazole, which was inactive alone. Thus, we identified potent, broad-spectrum antifungal drug leads from a small molecule screen using a high-throughput, S. cerevisiae reporter bioassay
Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization
Purpose Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Materials and methods Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. Results No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Conclusion Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images
Off-Target Effects of Psychoactive Drugs Revealed by Genome-Wide Assays in Yeast
To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin structure. Interestingly, fluoxetine (Prozac) interfered with establishment of cell polarity, cyproheptadine (Periactin) targeted essential genes with chromatin-remodeling roles, while paroxetine (Paxil) interfered with essential RNA metabolism genes, suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic clozapine (Clozaril) had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol) and pimozide (Orap). Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes
Demographic History of Indigenous Populations in Mesoamerica Based on mtDNA Sequence Data
The genetic characterization of Native American groups provides insights into their history and demographic events. We sequenced the mitochondrial D-loop region (control region) of 520 samples from eight Mexican indigenous groups. In addition to an analysis of the genetic diversity, structure and genetic relationship between 28 Native American populations, we applied Bayesian skyline methodology for a deeper insight into the history of Mesoamerica. AMOVA tests applying cultural, linguistic and geographic criteria were performed. MDS plots showed a central cluster of Oaxaca and Maya populations, whereas those from the North and West were located on the periphery. Demographic reconstruction indicates higher values of the effective number of breeding females (Nef) in Central Mesoamerica during the Preclassic period, whereas this pattern moves toward the Classic period for groups in the North and West. Conversely, Nef minimum values are distributed either in the Lithic period (i.e. founder effects) or in recent periods (i.e. population declines). The Mesomerican regions showed differences in population fluctuation as indicated by the maximum Inter-Generational Rate (IGRmax): i) Center-South from the lithic period until the Preclassic; ii) West from the beginning of the Preclassic period until early Classic; iii) North characterized by a wide range of temporal variation from the Lithic to the Preclassic. Our findings are consistent with the genetic variations observed between central, South and Southeast Mesoamerica and the North-West region that are related to differences in genetic drift, structure, and temporal survival strategies (agriculture versus hunter-gathering, respectively). Interestingly, although the European contact had a major negative demographic impact, we detect a previous decline in Mesoamerica that had begun a few hundred years before
- …