727 research outputs found

    Family murder in post-apartheid South Africa: reflections for mental health professionals

    Get PDF
    In the late eighties the phenomenon of family murder was closely linked to Afrikaans-speaking families faced with political change and uncertainty. A large study carried out by the Human Sciences Research Council (HSRC) at the time disputed this overly simplistic explanation and proposed a complex interplay of interpersonal and intrapsychic factors reflecting a phenomenon which took place under all population groups. Recent cases of family murder reported in the media have once again posed serious questions regarding possible etiological explanations for this phenomenon in post-apartheid South Africa. In this article the reviews the original HSRC findings as well as exploring social and psychological factors, which may be relevant in present day South Africa. A social constructionist perspective is used as a theoretical framework for understanding the wider context of this type of violence. In conclusion possible interventions, which move beyond the simplistic but focus rather on the social responsibility of mental health professionals are proposed. In die laat 1980s het die opvatting ontstaan dat daar 'n noue verband bestaan tussen gesinsmoord en Afrikaansprekende gesinne wat met politieke veranderinge en onsekerheid gekonfronteer word. 'n Omvattende studie wat op dié stadium deur die Raad vir Geesteswetenskaplike Navorsing (RGN) uitgevoer was, het hierdie oorsimplistiese standpunt bevraagteken. 'n Komplekse wisselwerking tussen interpersoonlike en intrapsigiese faktore, as 'n refleksie van 'n verskynsel wat onder alle bevolkingsgroepe voorkom, is as alternatief voorgestel. Onlangse gevalle van gesinsmoord wat in die media geraporteer is, het opnuut ernstige vrae oor moontlike etiologiese verklarings vir hierdie verskynsel in post-apartheid Suid-Afrika na vore gebring. Die skrywer neem in hierdie artikel opnuut die oorspronklike RGN-bevindinge in oënskou, terwyl sosiale en sielkundige faktore in post-apartheid Suid-Afrika, wat ook 'n impak hierop kan hê, ondersoek word. 'n Sosiaal-konstruksionistiese perspektief is as teoretiese raamwerk vir 'n beter begrip van die breër konteks van hierdie tipe geweld gebruik. Ten slotte word moontlike intervensies voorgestel wat verder as simplistiese verklarings kyk, en eerder op die sosiale verantwoordelikeheid van geestesgesondheidswerkers fokus. Key words: Family murder, Family violence, Violent crime, Mental health care, Psychological services (Health SA Gesondheid: 2003 8(2): 83-91

    A socio-psychological perspective on the phenomenon of infant rapes in South Africa

    Get PDF
    In the context of much social violence South Africa has recently witnessed an increase in the reported cases of rape of young children and even infants. In this article the author wishes to move away from an individual focus on the dynamics underlying the rapist but rather wants to present a socio-psychological perspective on this phenomenon. It will be argued that the rape of infants must firstly be understood within the context of rape as whole. Emphasis will also be given to specific social and political factors present in South African society which may place children at risk of abuse and sexual violence. The interpersonal relationships which may be typical of families of victims will also be explored. Finally intervention and management strategies for mental health professionals working with victims and their families will be suggested.S Afr Psychiatry Rev 2003;6:6-1

    Changes in the expression of the type 2 diabetes-associated gene VPS13C in the β cell are associated with glucose intolerance in humans and mice

    Get PDF
    Single nucleotide polymorphisms (SNPs) close to the VPS13C, C2CD4A and C2CD4B genes on chromosome 15q are associated with impaired fasting glucose and increased risk of type 2 diabetes. eQTL analysis revealed an association between possession of risk (C) alleles at a previously implicated causal SNP, rs7163757, and lowered VPS13C and C2CD4A levels in islets from female (n = 40, P < 0.041) but not from male subjects. Explored using promoter-reporter assays in β-cells and other cell lines, the risk variant at rs7163757 lowered enhancer activity. Mice deleted for Vps13c selectively in the β-cell were generated by crossing animals bearing a floxed allele at exon 1 to mice expressing Cre recombinase under Ins1 promoter control (Ins1Cre). Whereas Vps13cfl/fl:Ins1Cre (βVps13cKO) mice displayed normal weight gain compared with control littermates, deletion of Vps13c had little effect on glucose tolerance. Pancreatic histology revealed no significant change in β-cell mass in KO mice vs. controls, and glucose-stimulated insulin secretion from isolated islets was not altered in vitro between control and βVps13cKO mice. However, a tendency was observed in female null mice for lower insulin levels and β-cell function (HOMA-B) in vivo. Furthermore, glucose-stimulated increases in intracellular free Ca2+ were significantly increased in islets from female KO mice, suggesting impaired Ca2+ sensitivity of the secretory machinery. The present data thus provide evidence for a limited role for changes in VPS13C expression in conferring altered disease risk at this locus, particularly in females, and suggest that C2CD4A may also be involved

    Cellular Contraction and Polarization Drive Collective Cellular Motion

    Get PDF
    Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clusters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial monolayer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously. Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that deviates systematically from local cellular velocity

    Dense active matter model of motion patterns in confluent cell monolayers

    Get PDF
    Epithelial cell monolayers show remarkable displacement and velocity correlations over distances of ten or more cell sizes that are reminiscent of supercooled liquids and active nematics. We show that many observed features can be described within the framework of dense active matter, and argue that persistent uncoordinated cell motility coupled to the collective elastic modes of the cell sheet is sufficient to produce swirl-like correlations. We obtain this result using both continuum active linear elasticity and a normal modes formalism, and validate analytical predictions with numerical simulations of two agent-based cell models, soft elastic particles and the self-propelled Voronoi model together with in-vitro experiments of confluent corneal epithelial cell sheets. Simulations and normal mode analysis perfectly match when tissue-level reorganisation occurs on times longer than the persistence time of cell motility. Our analytical model quantitatively matches measured velocity correlation functions over more than a decade with a single fitting parameter.Comment: updated version accepted for publication in Nat. Com

    Decreased STARD10 expression is associated with defective insulin secretion in humans and mice

    Get PDF
    Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in β cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, β-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult β cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in β cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the β cell

    Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues.

    Get PDF
    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena

    High-statistics modeling of complex pedestrian avoidance scenarios

    Full text link
    Quantitatively modeling the trajectories and behavior of pedestrians walking in crowds is an outstanding fundamental challenge deeply connected with the physics of flowing active matter, from a scientific point of view, and having societal applications entailing individual safety and comfort, from an application perspective. In this contribution, we review a pedestrian dynamics modeling approach, previously proposed by the authors, aimed at reproducing some of the statistical features of pedestrian motion. Comparing with high-statistics pedestrian dynamics measurements collected in real-life conditions (from hundreds of thousands to millions of trajectories), we modeled quantitatively the statistical features of the undisturbed motion (i.e. in absence of interactions with other pedestrians) as well as the avoidance dynamics triggered by a pedestrian incoming in the opposite direction. This was accomplished through (coupled) Langevin equations with potentials including multiple preferred velocity states and preferred paths. In this chapter we review this model, discussing some of its limitations, in view of its extension toward a more complex case: the avoidance dynamics of a single pedestrian walking through a crowd that is moving in the opposite direction. We analyze some of the challenges connected to this case and present extensions to the model capable of reproducing some features of the motion

    Mapping and assessment of ecosystems and their services. Urban ecosystems

    Get PDF
    Action 5 of the EU Biodiversity Strategy to 2020 requires member states to Map and Assess the state of Ecosystems and their Services (MAES). This report provides guidance for mapping and assessment of urban ecosystems. The MAES urban pilot is a collaboration between the European Commission, the European Environment Agency, volunteering Member States and cities, and stakeholders. Its ultimate goal is to deliver a knowledge base for policy and management of urban ecosystems by analysing urban green infrastructure, condition of urban ecosystems and ecosystem services. This report presents guidance for mapping urban ecosystems and includes an indicator framework to assess the condition of urban ecosystems and urban ecosystem services. The scientific framework of mapping and assessment is designed to support in particular urban planning policy and policy on green infrastructure at urban, metropolitan and regional scales. The results are based on the following different sources of information: a literature survey of 54 scientific articles, an online-survey (on urban ecosystems, related policies and planning instruments and with participation of 42 cities), ten case studies (Portugal: Cascais, Oeiras, Lisbon; Italy: Padua, Trento, Rome; The Netherlands: Utrecht; Poland: Poznań; Spain: Barcelona; Norway: Oslo), and a two-day expert workshop. The case studies constituted the core of the MAES urban pilot. They provided real examples and applications of how mapping and assessment can be organized to support policy; on top, they provided the necessary expertise to select a set of final indicators for condition and ecosystem services. Urban ecosystems or cities are defined here as socio-ecological systems which are composed of green infrastructure and built infrastructure. Urban green infrastructure (GI) is understood in this report as the multi-functional network of urban green spaces situated within the boundary of the urban ecosystem. Urban green spaces are the structural components of urban GI. This study has shown that there is a large scope for urban ecosystem assessments. Firstly, urban policies increasingly use urban green infrastructure and nature-based solutions in their planning process. Secondly, an increasing amount of data at multiple spatial scales is becoming available to support these policies, to provide a baseline, and to compare or benchmark cities with respect to the extent and management of the urban ecosystem. Concrete examples are given on how to delineate urban ecosystems, how to choose an appropriate spatial scale, and how to map urban ecosystems based on a combination of national or European datasets (including Urban Atlas) and locally collected information (e.g., location of trees). Also examples of typologies for urban green spaces are presented. This report presents an indicator framework which is composed of indicators to assess for urban ecosystem condition and for urban ecosystem services. These are the result of a rigorous selection process and ensure consistent mapping and assessment across Europe. The MAES urban pilot will continue with work on the interface between research and policy. The framework presented in this report needs to be tested and validated across Europe, e.g. on its applicability at city scale, on how far the methodology for measuring ecosystem condition and ecosystem service delivery in urban areas can be used to assess urban green infrastructure and nature-based solutions
    corecore