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Abstract 
Coordinated motions of close-packed multicellular systems typically generate 

cooperative packs, swirls, and clusters. These cooperative motions are driven by active 
cellular forces, but the physical nature of these forces and how they generate collective 
cellular motion remain poorly understood. Here we study forces and motions in a 
confined epithelial monolayer and make two experimental observations: (i) the direction 
of local cellular motion deviates systematically from the direction of the local traction 
exerted by each cell upon its substrate, and (ii) oscillating waves of cellular motion arise 
spontaneously. Based upon these observations, we propose a theory that connects 
forces and motions using two internal state variables, one of which generates an 
effective cellular polarization, and the other, through contractile forces, an effective 
cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility 
reduce both the cellular effective elastic modulus and the frequency of oscillations. 
Together, theory and experiment provide evidence suggesting that collective cellular 
motion is driven by at least two internal variables that serve to sustain waves and to 
polarize local cellular traction in a direction that deviates systematically from local 
cellular velocity. 

 
Introduction 
 
 During wound repair, embryonic development, and cancer invasion, cells migrate in 
cooperative packs (1-3) that generate swirls (4, 5) and waves (6, 7). Our understanding 
of how cellular forces generate these collective behaviors is limited, but recent 
experiments have offered some clues. Firstly, within a confluent monolayer cells tend to 
migrate along orientations of minimal intercellular shear stress (8, 9); cell-cell junctions 
along these orientations carry appreciable normal stresses but only minimal shear 
stresses. Secondly, far from any boundary each cell exerts local tractions upon its 
substrate that tend to align with the direction of local motion (8, 10); near a boundary, by 
contrast, tractions tend to align systematically towards the cell-free boundary regardless 
of the direction of local cellular motion (10). 

Some previous theoretical models (11-14), but not all (15), have recognized that 
local tractions can align in a direction that deviates transiently, but not systematically,  
from that of the local velocity. This transient misalignment has been modeled by 
introducing noisy fluctuations around a tendency toward realignment (14, 16) or via an 
internal variable that regulates the correlation between traction and velocity (11-13). 
Here we provide further evidence showing that each cell polarizes so as to apply local 
traction in a direction that can deviate systematically from its local velocity, and that this 
systematic deviation is a general property of collective cellular motion. If local traction 
and local velocity are not aligned, it follows logically that tractions cannot result solely 
from viscous friction between the moving cell and its motionless substrate; rather, 
tractions must be regulated by variables in addition to velocity (11-13).  

To identify state variables that control cellular motion and propulsive forces, we 
study oscillating collective waves of cellular motion that are known to arise 
spontaneously in a confined epithelial monolayer (7). Oscillations in passive mechanical 
systems result from the exchange of elastic potential energy and inertial kinetic energy. 
Previous work has established that cell layers behave elastically (6) but have negligible 
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inertia (12-14). To account for the collective oscillations of cellular motion, we therefore 
propose an internal variable that provides an effective inertia in the sense that it sets a 
time scale for turnover in intracellular contractile tension (13). To account for the local 
angular deviation between cell traction and velocity, we propose a second internal 
variable that we call cell polarization. Using a minimal physical model, we show that 
these two internal state variables account for both the experimentally observed 
oscillatory waves of motion and local systematic angular deviation between cell traction 
and velocity. We conclude that the collective modes of cellular motion result from an 
interplay between cell contraction and polarization. 
 
Materials and Methods 
 
Cell culture 
MDCK cells, expressing GFP with a nuclear localization signal, were supplied by A. 
Pegoraro and D. Weitz (Harvard University). The cells were maintained in low glucose 
Dulbecco’s Modified Eagle Medium (Life Technologies ref. no. 12320-032) with 10% 
fetal bovine serum (Corning) and 1% penicillin-streptomycin (Sigma-Aldrich) in an 
incubator at 37°C and 5% CO2. 
 
Preparation of polyacrylamide substrates 
Polyacrylamide gels with Young’s modulus of 6 kPa and thickness of 100 µm were 
polymerized by preparing a solution of 5.5% weight/volume (w/v) acrylamide (Biorad 
Laboratories), 0.20% w/v bisacrylamide (Biorad Laboratories), 0.014% w/v fluorescent 
particles (diameter=0.5 µm, carboxylate-modified, Life Technologies), 0.05% w/v 
ammonium persulfate (Biorad Laboratories), and 1/2000 volume/volume TEMED 
(Biorad Laboratories). The gel solution was pipetted onto glass bottom dishes (In Vitro 
Scientific), a glass coverslip was placed on top, and the dishes were centrifuged upside 
down so that the fluorescent particles collected at the top surface of the gel. The gels 
were functionalized with type l rat tail collagen (0.01 mg/mL, BD Biosciences) using the 
covalent crosslinker sulfo-SANPAH (Pierce) as described previously (17) . 
 
Micropatterning expanding and confined cellular islands 
Masks were prepared with circular holes (diameter = 700 µm) using standard 
techniques in soft lithography, similar to those described previously (6). Silicon-
photoresist masters were custom fabricated (MicroFIT Co., Ltd.), and PDMS (Sylgard 
184, Dow Corning) was poured onto the masters to cure on a hot plate at 80°C. The 
PDMS masks were sterilized with 70% ethanol and incubated at 37°C in 2% Pluronic F-
127 (Sigma-Aldrich) for several hours. For expanding islands, masks were placed on 
the collagen-coated polyacrylamide gels, and a 200 µL droplet of cell suspension (4x105 
cells total) was placed on each mask. The gels were transferred to a 37°C/5% CO2 
incubator for 45 min for the cells to adhere to the collagen. Afterward, the 200 µL 
droplets were aspirated off of the PDMS masks, the masks were removed with 
tweezers, and the gels were rinsed with PBS before adding 3 mL fresh medium. For 
confined islands, masks were placed onto the polyacrylamide gels before functionalizing 
with collagen, thus leaving a circular island of collagen to which the cells adhered. 
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Microscopy 
Images of the cells, nuclei, and beads were captured every 20 minutes using phase 
contrast (for cells) or fluorescent (for nuclei and beads) microscopy using a DMI6000B 
microscope with a 5x NA 0.12 objective and a DFC345FX CCD camera (Leica 
Microsystems). Fluorescent particles and cell nuclei were imaged with fluorescence; 
cells were imaged with phase contrast. The imaging environment was maintained at 
37°C/5% CO2 in a heated enclosure (Pecon). For experiments with expanding cellular 
islands a 2x2 grid of images was captured and stitched together using the freely 
available Fiji distribution of ImageJ (http://fiji.sc/Fiji) (18). After each time lapse 
experiment, cells were removed from the polyacrylamide substrates with trypsin, and 
images were collected of the fluorescent particles; these images captured a stress-free 
reference state of the polyacrylamide substrates for subsequent computation of 
tractions. 
 
Measuring cell velocity and rate-of-strain 
The velocity fields were measured using custom particle image velocimetry (also called 
digital image correlation) software of phase contrast images written in Matlab (The 
Mathworks). Interrogation windows of 64x64 pixels were used; this window size allowed 
for a spatial resolution of ~16 pixels (14 µm). Boundaries of the cell islands were 
detected automatically using a previously described protocol (19). The rate-of-strain 
tensor was computed by numerically differentiating the velocity fields in space. 
 
Traction force microscopy and monolayer stress microscopy 
Displacements of the particles were measured using digital image correlation, and 
tractions exerted between the cell layer and its substrate were computed using 
unconstrained Fourier Transform Traction Microscopy (20) taking into account the 
effects of finite substrate thickness (17, 21).  From these measured tractions we 
computed the distribution internal stresses within the cell layer using Monolayer Stress  
Microscopy (MSM) (8, 22).    
 
MSM rests upon the main assumptions that the cell layer is flat, continuous and thin. 
Regardless of material properties of the cell layer, including any effects of nonlinearity 
and viscoelasticity, Newton’s laws in one dimension demand that these internal stresses 
and boundary traction stresses must always remain in precise balance, and the MSM 
solution in that case is therefore exact (8, 22). In two dimensions matters are slightly 
more complicated because the Poisson effect makes the solution inexact.  
Nevertheless, the sensitivity to the Poisson effect has been shown to be quite small, 
and the solution has been shown to be insensitive to a remarkably wide range of 
assumptions about material properties of the cell layer itself, its nonlinearity, and its 
viscoelasticity (8, 22); this finding was further validated independently by Zimmermann 
et al. (16), who used a particle-based simulation to show that the stresses in the 
simulation are recovered by MSM with a high degree of accuracy. In two dimensions, 
three independent components of the stress tensor within the monolayer are obtained 
by solving three coupled equations. Two of those equations are force balance, which 
make no assumptions about the properties of the monolayer (8, 22). The third equation 
is the compatibility of the deformation field. For more information, see the Supporting 
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Text. Displacements, tractions, and stresses are measured at the same spatial 
resolution as the velocity field, 14 µm.  
 
Measuring cell area 
The position of each cell’s nucleus was computed from the fluorescent images of nuclei 
using the watershed transform in Matlab. For each cell, the distance between its 
nucleus and the nuclei of the nearest 6 neighbors was computed and averaged; this 
distance was taken to be the diameter of that cell. From each cell’s diameter, its area 
was computed. 
 
Chemical treatments 
Chemical treatments were blebbistatin (20 µM), U0126 (10 µM), and EGF (20 ng/mL). 
All comparisons were made to a vehicle control. 
 
Statistics 
Statistical comparisons were made using the nonparametric Wilcoxon rank sum test in 
Matlab. 
 
Results 
 

To investigate the relationship between cellular tractions and velocities, we seeded 
monolayers of Madin-Darby Canine Kidney (MDCK) cells onto circular islands (diameter 
= 700 µm) of adhesive collagen type I. We measured cell velocities with particle image 
velocimetry and simultaneously measured tractions with traction force microscopy (17, 
20, 21) (Fig. 1, Supporting Fig. S1). Similar to reports in a previous study (7), we 
observed sustained oscillations of inward and outward cellular motion comprising waves 
with a period of ~6 hours (Fig. 1b, Supporting Movie 1). To visualize the data at all 
points in space and time, we averaged the velocity data over the azimuthal angle to 
collapse all spatial data onto a single axis specifying the radial position. We then plotted 
the data over time to generate a kymograph. As shown in the kymograph of velocity 
(Fig. 1d), the cellular motion was highly coordinated with standing waves of outward and 
inward collective motion, similar to seiches observed in lakes or other confined bodies 
of water. 

Surprisingly, even though the monolayer velocity varied little with the radial position 
at a given time, tractions were organized in a standing wave with finite wavelength, 
corresponding to tractions at the perimeter of the island pointing inward and tractions 
within the bulk of the island oscillating radially inward and outward over time (Fig. 1e). 
At the perimeter of the island all cells applied inward-pointing tractions (Fig. 1c), 
indicating that these cells pulled themselves toward the exterior free space, a behavior 
called kenotaxis (10). But across the island the correlation between traction and velocity 
was negligible (typical correlation coefficient magnitude |R| < 0.1, Fig. 1b-c). 
Furthermore, the angles between the directions of velocity and traction showed a nearly 
uniform distribution across the monolayer (Fig. 1f), indicating that the orientation of each 
cell’s traction is not linked solely to its velocity.  

To investigate further the relationship between traction and velocity, we considered 
cellular motion within an expanding cellular island wherein the cells were not restricted 



6 
 

by a boundary. We seeded cells onto a mask with 700 µm holes placed atop a 
compliant polyacrylamide gel coated with collagen type I. As shown previously (4), 
removing this mask induces cell migration into the newly created free space. Upon 
sensing the free space created by mask removal, cells located at the perimeter of the 
island migrated first, and their outward motion caused cells just inside the perimeter to 
follow (Supporting Fig. S2). Over time, more and more cells began to move, creating a 
wave of radial motion that propagated from the perimeter to the center of the island 
(Supporting Fig S2b,d), similar to the waves of motion observed for cells in a 
rectangular monolayer (6). Much like the cells in the confined islands, the cells near the 
perimeter of the expanding islands applied inward tractions so as to pull themselves 
toward free space (Supporting Fig. S2c,e). For cells in the bulk of the expanding island, 
however, we observed no alignment between directions of traction and velocity 
(Supporting Fig. S2f). 
 These findings point to the notion that cells tend to apply local propulsive forces in a 
direction that can deviate systematically from the direction of local cellular motion. In the 
specific case of cells near the edge of the freely expanding monolayer, local tractions 
and velocities were aligned, but elsewhere they were not. Why this independence of 
orientations? In contrast to previous models (23, 24) which predict that cells apply 
traction along a gradient of cellular density, our data showed no correlations between 
the orientations of cellular tractions, velocities, or gradients in number density 
(Supporting Fig. S3). 
 We tracked the position of each cell’s nucleus to compute the average distance 
between each nucleus and its neighbors; from these distances we then computed the 
local area covered by each cell. Within the confined islands, cellular areas increased as 
cells collectively moved outward and then decreased as they moved inward (Fig. 2a). 
We compared the cellular areas to the stresses within the monolayer, which we 
measured using monolayer stress microscopy (8, 22). We found that the tension σ 
(defined as the mean of the two principal stresses within the cell monolayer) periodically 
increased and decreased with the same frequency as the radial waves in cellular 
velocity and with the same phase as the cellular area (Fig. 2b), thus implying an elastic 
relationship. To further investigate the elastic behavior of the monolayer, we examined 
the relationship between stress and strain rate, and found no correlation (Supporting 
Fig. S4). The lack of correlation implied that viscous contributions to the monolayer 
stress are negligible. We then compared the time derivative of stress to the strain rate. 
Specifically, we plotted the time derivative of the tension (dσ/dt) and the trace of the 
strain rate tensor (dε/dt), which were well correlated over time along a single radial 
position (Fig. 2c). The correlation is further evident by a scatter plot (Fig. 2d). The 
elastic modulus K of the cell monolayer is given by the slope of a line fit to the scatter 
plot, K=113 ± 28 Pa (mean ± standard deviation, n=8 islands). 

Similarly, cells in a freely expanding island displayed elastic behavior. As an island 
expanded due to outward migration, each cell within that island became stretched, 
thereby increasing its area (Supporting Fig. S5a,b). Similar to the confined islands, 
when cells increased in area, the tension consequently increased (Supporting Fig. S5c). 
As above, when we plotted dσ/dt against dε/dt, the data were well correlated for a single 
radial position (Supporting Fig. S5d) and for all positions within the island (Supporting 
Fig. S5e). For the expanding islands, we found a modulus of K=62 ± 17 Pa (n=7 
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islands). Our findings thus demonstrated that both confined and expanding cellular 
monolayers behave as an elastic material, albeit with different elastic moduli. 

To examine the internal variables that generate cellular polarization and oscillatory 
waves, we developed a minimal physical model, which describes the monolayer as an 
elastic continuum with a displacement field , . As considered previously in a one-
dimensional model of an expanding cell monolayer (13), we couple this displacement 
field to a scalar field ,  describing the concentration of a chemical signal controlling 
cell contractility, as elaborated below. In addition, we introduce a dimensionless vector 
polarization field, , , whose magnitude describes the local degree of polarization in 
the cell layer. The orientation of  defines the local direction of the propulsive thrust 
internally generated by each cell through its adhesion to the substrate (Fig. 3a) (11-14). 
The traction exerted by the cell layer on its substrate is therefore the difference between 
the viscous friction and the thrust,  
 , (1)
where  describes viscous friction with the substrate and  is the strength of the 
coupling between cell polarization and thrust (Fig. 3a). The motivation for introducing 
the polarization field comes from our experimental data described above, which show 
that local cell traction is not aligned with local cell velocity, indicating that there must be 
an additional internal driving force in the equation of motion for the monolayer. The 
dynamics of the cell monolayer is over-damped and is governed by the force-balance 
equation, 
 , (2)
where  is the thickness of the monolayer, and  is the tensor describing the in-plane 
stresses within the cellular monolayer, with the Latin indices representing in-plane 
spatial coordinates. The monolayer stress tensor  consists of stresses exerted by 
elastic and active elements within the cell and connected in parallel. As such, 

, where  is the stress tensor of a linearly elastic material (25) (Supporting 
Text) and  is the active stress due to intracellular contractile signaling (Fig 3b). We 
take this to be of the form 	log	 / , where  is the Kronecker delta, and >0 
controls the strength of the active contractile stresses. These active stresses might be 
generated, for example, by a chemical reaction such as ATP hydrolysis, described by a 
concentration field , representing the concentration of phosphorylated myosins, with 
the equilibrium value given by  (13). Eq. (2) is supplemented by equations governing 
the dynamics of the internal variables  and . The concentration of the chemical is 
described by a reaction-advection equation,  
 	 	 . 1 . , (3)

where  is the timescale of relaxation to equilibrium and 0 is the rate of production 
of the chemical due to cellular stretching. Thus, in agreement with the experimental data 
(Fig. 2) and previous results for single cells (26), a local increase in cell area generates 
a local increase in the contractile stress  (and vice-versa). The dynamics of the 
polarization field is given by, 
 
 1 | | / , (4)
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where 0  controls the rate of relaxation to a homogeneously polarized cell 
monolayer, and  controls the strength of nearest-neighbor alignment of the polarization 
field. The active coupling	 0 describes the rate of alignment of cell polarization with 
the gradients in the concentration field, such that local cell motion is propelled over time 
towards regions of high contractility. 

By solving Eqs. (1-4) assuming in-plane circular symmetry, we applied this model to 
the confined monolayers in our experiments (see Supporting Text). The results are 
displayed in a series of kymographs showing the spatiotemporal evolution of the radial 
velocity, the monolayer tension, and the traction (Fig. 3c-e). The model quantitatively 
captured multiple aspects of our experimental data, namely that the monolayer’s 
velocity field alternated between inward and outward motion (Fig. 3c) with a time period 
equal to that of the oscillations in the monolayer tension (Fig. 3d). This wave-like motion 
is predicted by the model to arise through the chemo-mechanical feedback between the 
mechanical strain and the internal state variable  (13, 27). In the limiting case , 
when the deformation  is only coupled to , no oscillatory behavior is observed 
(Supporting Fig. S6d-f). However, if the deformation  is coupled to  only, the traction 
is proportional to velocity, which contradicts our experimental observations (Supporting 
Fig. S6a-c). This indicates that the polarization field  is crucial to capture the 
misalignment between traction and velocity. Thus coupling of the deformation  to both 

 and  is required to capture the experimentally observed distribution of tractions, 
which pointed inwards at the exterior of the cell island and oscillated between outwards 
and inwards within the bulk of the island (Fig. 3e). 

To test the model’s prediction that a feedback between mechanical strain and 
cellular contraction generates collective oscillations, we inhibited contraction with the 
myosin-II inhibitor blebbistatin (20 µM). For an expanding island, blebbistatin has no 
effect on the speed of migration (6), but in confined islands blebbistatin reduced each 
cell’s speed (Fig. 4a,c). Further, blebbistatin eliminated the multicellular oscillations (Fig. 
4a, Supporting Movie 2), and reduced the modulus K to ~20 Pa (Fig. 4d). This 
observation is consistent with our model which predicts that the coupling between strain 
and contractility yields an effective modulus /2  (13), larger than 
the modulus  of the monolayer in the absence of contractility. Removing the coupling 
between strain and contractility by setting 0 eliminated the oscillatory waves in our 
model (Fig. 4b). These findings suggest that the elasticity is primarily active: the 
oscillations in motion cause oscillations in cellular strain, which through active 
contraction cause oscillations in tension. To further test this, we sought to connect 
changes in elasticity with the motion. We found that EGF (20 ng/mL) increased the 
period of oscillation (Fig. 4e,g). In an oscillatory system, modulus and period are 
inversely related, and in accord with increasing the period, treatment with EGF 
decreased the modulus K (Fig. 4h). When we reduced the magnitude of the constants 
that couple tension and strain,  and , we saw, similarly, an increase in the period of 
oscillations (Fig. 4f). From these findings—that the waves require contraction and that 
the period depends inversely on modulus—we conclude that the elasticity is not passive 
in nature; rather, it is the result of myosin-driven contractility within the cell. 
 
Discussion 
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Here we have studied motions and forces in a confined monolayer of epithelial cells. 
Spontaneous oscillations arise wherein cells alternated between outward and inward 
correlated motions that resemble the sloshing seiches that are observed in confined 
bodies of water. The direction of local cellular velocity is generally independent of the 
direction of local traction, thus indicating that the relationship between force and motion 
requires additional state variables. Two cellular state variables, the concentration of 
contractile elements and the polarization of cell motion, were introduced to reproduce 
the experimental results. The coupling between the cellular strain and chemical 
concentration generates effective inertia which, together with cellular elasticity, supports 
the oscillatory waves of motion observed in the experiments. Decreasing the elastic 
modulus with EGF increased the period of oscillation (Fig. 4g,h), in agreement with the 
theory. 

Elasticity of the monolayer has been previously attributed to a passive spring-like 
behavior of the cytoskeleton, its contractile apparatus, and cell-cell adhesions (6, 7). In 
contrast, our model now incorporates a feedback between cellular strain and 
contractility such that a local increase in cell area induces larger contractility. This 
mechanism is consistent with recent experiments on single cells (26) and multicellular 
clusters (28, 29), which show that cells with larger area are more contractile than cells 
with smaller area. When we suppressed cell contractility with the myosin-II inhibitor 
blebbistatin, the elastic modulus decreased by an order of magnitude (Fig. 4d), and the 
waves were suppressed (Fig. 4a). From this observation we conclude that the elasticity 
required to generate the waves is not simply a passive spring-like behavior; rather it 
results from the active contractile elements inside the cell (29). Adding blebbistatin 
reduced the average cell speed in these confined islands, but such a reduction in speed 
is unlikely to be the mechanism that inhibits the oscillations in cellular motion. A 
previous study showed that blebbistatin in an expanding cellular island has no effect on 
cell speed, but it does eliminate propagating waves of contractile tension (6). This 
observation agrees with our finding that active cell contraction is required to generate 
the oscillatory waves.  

The molecular mechanisms that link changes in cellular stretching to changes in 
contractile tension are unknown, but theoretical studies (12) and experimental evidence 
point to ERK MAP kinase (ERK1/2) as being associated with extension of muscle tissue 
(30) and stretching of stress fibers (31). Moreover, when a monolayer begins to expand 
into free space, a wave of ERK1/2 phosphorylation propagates from the monolayer’s 
free edge into the bulk (32) with approximately the same speed as the waves of cellular 
motion that occur in our experiments of expanding cellular islands (Supporting Fig. S2d) 
and have been reported elsewhere (6). When we inhibited ERK1/2 with U0126 (10 µM), 
the effective modulus decreased by a factor of two, and collective oscillations were 
suppressed (Supporting Fig. S7). 

Collective cellular oscillations similar to the ones described here have been reported 
by Deforet et al. (7), who performed stochastic particle-based simulations that balanced 
the forces of inertia, friction, intercellular adhesions and active propulsion. In their 
simulation each cell was given a tendency to adapt its velocity to that of its nearest 
neighbors. Although the model by Deforet et al. and the one presented here are both 
based on local force-balance, they differ in spirit. Instead of simulating the dynamics of 
individual cells, we propose a continuum model formulated in terms of a few coarse-
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grained fields such as traction and velocity, which are measured directly in the 
experiments. Our model contains only a small number of parameters that represent 
effective material properties of the monolayer and describe the combined effect of a 
number of signaling pathways. The model makes testable predictions that provide a 
way of correlating the macroscopic parameters of the theory with specific pathways. 

Oscillatory or wavelike motion requires second order differential equations in time, 
corresponding to the tradeoff between two independent time scales. The dynamics of 
cellular monolayers is overdamped, hence governed by a first order differential 
equation, with a single time scale determined by the interplay of viscous friction and 
elasticity. Until now the origin of the second time scale required for oscillatory behavior 
has remained mysterious. Deforet et al. accounted for the second time scale by 
introducing cellular inertia (7). Serra-Picamal et al. accounted for the second time scale 
by assuming stretched cells became fluidized (i.e., they flowed under tensile forces) for 
a specified period of time (6). There is evidence that cells fluidize when stretched and 
unstretched quickly (33-35), but whether stretches due to slow cellular motion induce 
fluidization remains an open question. Our model and experiments point to a second 
time scale that comes from the mechanochemical feedback (12) between the local 
strain and the rate of change in contractile tension. This feedback mechanism results in 
self-sustained periods of stiffening and fluidization in the cell monolayer (13). 

Dynamics of the chemical concentration  does not explain the apparent 
independence between the local orientations of traction and velocity (Fig. 1f, Supporting 
Fig. S2f, Supporting Fig. S8). Whereas Kim et al. showed velocity and tractions do not 
align near to a boundary (10), we show here that an angle of misalignment between 
traction and velocity occurs even in the absence of a boundary. The histogram of the 
angle between traction and velocity at all points in time (Fig. 1f, blue line) shows a very 
small peak near zero, indicating a slight tendency for cells to pull on the substrate in the 
same direction that they move. This occasional alignment between motion and traction 
is consistent with the presence of a viscous drag exerted by the moving cells onto the 
substrate, as described by our model and others (11-14). In these models the viscous 
drag term connects tractions to motion, and thus our observation of occasional 
alignment between traction and velocity serves as a confirmation of this connection. 

To account for the deviation between the local directions of traction and velocity, we 
propose a vector polarization field that directs the cellular motion. Other theoretical 
models have also incorporated a cell polarization field defining the orientation of an 
anisotropic dipole-like contractile stress (11), with dynamics governed by general 
nonlinear hydrodynamic equations of polar liquid crystals (12, 36). The generality of 
these previous models has, however, obscured the physical role of cell polarization in 
controlling collective cell dynamics. In contrast, our work considers a minimal model 
where cell polarization does not generate shear stresses, in agreement with our 
experimental data that show an isotropic distribution of monolayer stress field 
(Supporting Fig. S9). Importantly, we identify two physical mechanisms that control the 
dynamics of cell polarization. First, cells tend to polarize their motion toward free space, 
consistent with kenotaxis (10). Secondly, the polarization field evolves in time so as to 
locally align towards regions of high contractile tension in the monolayer (Supporting 
Fig. S10). These two tendencies are required to reproduce the spatial patterning of the 
traction field (Fig. 1e, Fig. 3e), and they provoke the question of what molecular 
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mechanism generates the polarization. The cytoskeletal protein merlin may be involved, 
as the feedback between merlin and Rac1 has been shown to direct formation of 
lamellipodia in collective cellular migration (9). If merlin indeed polarizes the cells, it is 
likely only one of several molecular mechanisms controlling the forces that drive 
collective cellular motion. 

Here we have found that the various biological mechanisms controlling the waves of 
collective motion combine together to relate force and motion through two physical 
variables, one controlling intracellular contractility and the other polarizing cell motion. 
These two state variables are present within each cell, but perhaps even more striking 
is the fact that each cell coordinates these state variables with its neighbors to generate 
emergent waves of correlated motion that span multiple cell diameters. Emergent 
phenomena like these multicellular waves control the motion and final positioning of the 
cellular collective, and thus they are likely to play a key role in development and 
disease. The two internal variables that we describe here—cell contraction and 
polarization—provide a framework for further investigation. 
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Figures 
 

 
Figure 1. (color online) Tractions do not align with local cellular motions. (a) Phase 
contrast images of a confined cell monolayer. Time zero corresponds to the first image 
collected. (b, c) The radial components of velocity (b) and traction (c) are uncorrelated 
with one another. At some time points (e.g. 160 min), the Pearson’s correlation 
coefficient R is positive, and at other time points (e.g. 400 min) it is negative. (d) The 
kymograph shows the radial velocity as a function of position and time. Red and blue 
bands indicate oscillating outward and inward motion. (e) Kymograph of radial traction 
showing that cells at the perimeter apply tractions that point inward, while cells within 
the bulk apply tractions that oscillate between inward and outward. (f) Histogram of the 
angle between the velocity and traction vectors. Each gray line shows a single point in 
time for the cell island; the blue line shows all points in time. 
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Figure 2. (color online) Elastic behavior of the cell monolayer. (a) The oscillatory motion 
causes expansion and contraction of each cell, shown by the oscillations in the 
kymograph of cell area. (b) Contractile tension within the monolayer oscillates in phase 
with the cell areas. (c) The area strain rate (dε/dt, defined as the trace of the rate-of-
strain tensor) and the time derivative of tension (dσ/dt) are computed by averaging 
around a circle 100 µm from the center of the island and plotting over time. dε/dt and 
dσ/dt are well correlated (Pearson’s correlation coefficient R = 0.77). (d) A scatter plot of 
dσ/dt vs. dε/dt for all cell positions at all times shows a positive correlation (R = 0.59). 
The slope of a linear fit (red line) is equal to the effective elastic modulus of the 
monolayer, given by K=152 Pa. The kymograph of velocity for this cell monolayer is 
shown in Fig. 1d. 
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Figure 3. (color online)Minimal physical model captures the wave-like motion and the 
distribution of traction of the cell monolayer. (a) Schematic of the forces acting on the 
cell monolayer. Tractions exerted by the monolayer on the substrate point inwards (red 
arrows) at the monolayer edge and balance the forces due to viscous friction,  (black 
arrows) and propulsion  (green arrows). The monolayer is in mechanical equilibrium, 
such that the tractions are locally balanced by the divergence of the monolayer stress, 

. . (b) Constitutive elements of the mechano-chemical model. The elastic and 
active elements exert stresses in parallel, and a local gradient in stress is balanced by 
the traction exerted by the cell on the substrate. (c) Kymograph of radial velocity in the 
cell monolayer captures the experimentally observed collective inward and outward 
cellular motions. (d) Kymograph of cellular tension in the monolayer, which increases 
and decreases periodically with the same frequency as the velocity. (e) Kymograph of 
radial traction. See Supplementary Table 1 for a complete list of the model parameter 
values. 
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Figure 4. (color online)The waves of collective motion and elasticity in the monolayer 
depend on the contractile activity of the cells. (a) Kymograph of radial velocity after 
treatment with blebbistatin shows reduction in speed and elimination of oscillatory 
waves of radial motion. (b) Simulated kymograph of radial velocity using the model with 
no feedback between strain and contractility ( 0) also shows elimination of waves. 
(c, d) Treatment with blebbistatin reduces root-mean-square speed of cells by a factor 
of ~4 (c) and reduces the modulus K to a nearly negligible value (d). (e) Kymograph of 
radial velocity for an island treated with EGF (20 ng/mL) and (f) simulated kymograph 
with reduced values of the parameters  and . (g) Compared with control, EGF 
increased the period of oscillation. (h) Relative to control, treatment with EGF 
decreased the effective elastic modulus K. For the plots in (c), (d), (g), and (h) each dot 
corresponds to a different cell island. P values are computed using a rank sum 
statistical test. 
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Monolayer stress microscopy

Here we detail our experimental technique for recovering intercellular stresses from tractions, called mono-
layer stress microscopy (MSM; Refs. 8, 22). The concept underlying monolayer stress microscopy is force
equilibrium applied to the cell layer. Assuming the layer to be thin with no variation through the thickness,
the two equilibrium equations are

∂s
xx
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+
∂s

xy
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+
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h

= 0
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+
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h

= 0,
(1)

where s
i j

are components of the in-plane stress tensor, T

i

is the i-th component of the traction vector applied
by the substrate to the monolayer, and h is the thickness of the monolayer. These equations are independent
of the constitutive properties of the monolayer; they result directly from a balance of forces. Note that in
one dimension (chosen in the x direction) Eqs. (1) would reduce to the single equation

∂s
xx

∂x

+
T

x

h

= 0 , (2)

which can immediately be integrated to obtain the cellular stress s
xx

with no assumption on the form of the
constitutive equation.

In two dimensions, however, the stress tensor has three unique components, so a third equation is required.
In the original implementation of MSM (8, 22), the monolayer was assumed to behave as a linear elastic
material, giving the following two-dimensional (2D) constitutive relationship between stress and strain:
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where E is Young’s modulus, n is Poisson’s ratio, and e
i j

are components of the in-plane strain tensor. Here
summation over repeated indices is implied. Assuming the monolayer is homogeneous, the constitutive
equation combined with Eqs. 1 and compatibility of strain (requiring that the strain be the derivative of a
unique vector field),
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give the Beltrami–Michell equation (22),
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Together, Eqs. 1 and 5 can be solved for the three independent components of the stress tensor s
i j

. Note
that the equations are independent of Young’s modulus; furthermore it has been shown that dependence on
Poisson’s ratio is sufficiently weak to make it negligible (22).

We now discuss the case where the cell layer is a linear viscous material. In this case the 2D constitutive
equation is
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where p is the thermodynamic pressure, µ
b

and µ
s

are the bulk and shear viscosities, respectively, and the
overdot represents a partial derivative in time. Requiring that the strain rate ė

i j

be the derivative of a unique
vector field (the local velocity) yields a compatibility equation
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If we assume the layer to be incompressible and neglect pressure gradients, we can combine Eqs. 1, 6, and
7 to obtain
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which is equivalent to Eq. 5. In this case the conventional method used to infer stress from traction in
MSM applies regardless of whether a material is elastic or viscous. In general, however, in a fluid density
fluctuations are not slaved to strain fluctuations and an additional condition is needed to determine the
pressure. Whether such a pressure exists in a cell monolayer remains unknown.

Recent work by Zimmermann et al. (16) has provided independent validation of the method used in MSM.
In their verification, Zimmermann et al. simulated collective cell motion using a particle-based model. The
particles in the model represented cells, and were able to flow freely past one another with no memory of
their previous position, therefore behaving like a fluid where particles do not maintain the same neighbors
in the course of time. Zimmermann et al. then computed the stresses directly from the simulations and
compared them to stresses computed with MSM. The comparison showed close agreement (16), suggesting
that MSM can be applied to either an elastic or a viscous material, and that pressure variations do not play
an important role in the viscous case.

Minimal physical model of collective cell motion

Continuum model. Here we provide a detailed description of the minimal physical model introduced in
the main text. We consider a thin film of cell monolayer confined to a circular micro-pattern of radius R

with average height h. We describe the monolayer as an elastic continuum whose vector displacement at
position r and at time t is given by u(r, t). The local displacements of the monolayer are coupled to two
internal degrees of freedom, the concentration c(r, t) of a regulatory chemical controlling cell contractility,
and a dimensionless vector field p(r, t) controlling the angle of misalignment between local cell motion
and propulsive traction forces. The magnitude of p accounts for the amount of misalignment between cell
motion and traction, whereas its orientation defines the direction of the thrust force acting on the cell. In the
absence of external forces, in-plane force balance gives,

∂
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S
i j

+∂
z

S
iz

= 0 , (9)

where S is the stress tensor of the monolayer and latin indices denote in-plane coordinates x and y. For
h ⌧ R, we average the force balance across the z-direction, assuming that the top surface of the monolayer
at z = h is stress free, i.e. S

iz

|
z=h

= 0. This gives us,
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|
z=0, (10)

where s
i j

(x,y) = h

�1 R h

0 dz S
i j

(x,y,z) is the thickness averaged stress tensor of the monolayer equivalent to
what is measured in experiments. We identify the shear stress at the cell–substrate interface, S

iz

|
z=h

, as the
traction stress T

i

exerted by the cell on the substrate. This gives us the following relation between monolayer
stress and traction,

T
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The monolayer stress tensor is given by the sum of passive elastic and active elements connected in parallel
(Fig. 3b), s

i j

= s el
i j

+s a
i j

, where the passive elastic component of the stress tensor, s el
i j

, is assumed to be
isotropic and homogeneous. It is given by,
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B and G are respectively the in-plane bulk and shear elastic moduli of the monolayer, e
i j

the symmetrized

strain tensor, e
i j

=
1
2
(∂

i

u

j

+∂
j

u

i

) and d
i j

the Kronecker delta. The active stress s a
i j

is taken proportional
to the chemical potential µ of the regulatory chemical, which in turn is proportional to the logarithm of the
concentration field, µ µ log(c/c0) (13). We thus have,

s a
i j

= b log(c/c0)di j

, (13)

where b > 0 is the magnitude of the active contractile stresses generated by molecular motors and c0 is the
equilibrium concentration. The assumption of isotropic stress is consistent with the stress field measured
in our experiments using monolayer stress microscopy. Our principal stress analysis reveals that the stress
ellipses in the monolayer typically have low aspect ratio with a quotient of maximum shear to tension less
than 0.2 (Supporting Fig. S9). The dynamics of the displacement field, u(r, t), is given by

z ∂
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i
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i

+h∂
j

s
i j

(14)

where z describes viscous friction with the substrate and the constant f is the magnitude of the coupling
between polarization and motion and quantifies the strength of the propulsion force. The resultant traction
applied by the cells on the substrate is thus, T = z ∂

t

u� f p. The dynamics of the concentration field c(r, t)
is given by,

∂
t
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kk
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where t is the timescale of actomyosin relaxation to equilibrium and a is the rate of production of c due to
cellular stretching. The second term on the left hand side of Eq. (15) describes convection of chemicals by
local cell motion. The dynamics of the polarization field p(r, t) is given by,

∂
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p
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where the first two terms allow for the onset of a homogeneously polarized system, |p|= 1, and a (> 0) is the
rate of relaxation to the homegeneous state |p|= 1. Local cost of fluctuations in polarization is characterized
by an isotropic stiffness k with dimensions of diffusivity; it describes the tendency of cell polarization to
align with its neighbors. The active coupling w describes the local rate of alignment of cell polarization with
the gradients of the concentration field.

Numerical solution in circular geometry. We numerically solve the model equations in a circular geome-
try by assuming in-plane rotational symmetry such that all quantities depend solely on the radial coordinate,
r. Rotational symmetry in polar coordinates implies that shear stresses s

rq vanish and the dynamics of
the radial displacement field are solely governed by normal stresses, in agreement with the experiments
(Supporting Fig. S9). The equation of motion for radial displacements u

r

is given by,
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where s
rr

and sqq define the radial and orthoradial components of the normal stress in the monolayer, given
by,
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The equation governing the dynamics of c is given by,
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Finally, the equation governing the dynamics of radial polarization, p

r

, is given by
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The homogeneous solutions to the above equation, p

r

=±1, describe uniformly polarized states of the cell
monolayer with the cell motion pointing radially outwards for p

r

= 1 and inward for p

r

=�1. The solution
p

r

= 1 describes the tendency of cell motion to polarize towards the free space at the exterior of the cell
island, consistent with kenotaxis (10).

To solve the above equations, we assume that no external forces act at the outer boundary such that s
i j

n

j

= 0
where n

j

is the outward unit normal vector to the boundary. This translates to the boundary condition
s

rr

(R) = 0 in circular geometry. We model adhesion with the micropattern by anchoring a hookean spring
of stiffness 0.03 Pa/µm at the boundary of the cell monolayer. We choose a no-flux boundary condition
for c and p

r

, such that ∂
r

c(R) = 0, and the gradients of the polarization variable at the outer boundary is
zero, ∂

r

p

r

(R) = 0. We also assume that the monolayer is initially undeformed, u(r,0) = 0, and unpolarized,
p

r

(r,0) = 0, with an equilibrium concentration of contractile elements, c(r,0) = c0. We then integrate
numerically Eqs. (17), (20) and (21) with the given initial and boundary conditions by means of the Runge–
Kutta–Fehlberg method. We solve three different implementations of the model:

• u-p model. Radial displacement u

r

is coupled only to p

r

and the concentration field is assumed to be
constant, c = c0. In this case no wave-like behavior is obtained (Supporting Fig. S6 d–f), indicating
that the mechanochemical coupling between c and u

r

is crucial to reproduce the waves of oscillatory
motion.

• u-c model. Displacement u

r

is coupled to c only. The polarization field and hence the propulsion
force f p

r

are set to zero. In this case we obtain standing waves qualitatively similar to those seen in
experiments (Supporting Fig. S6 a–c). However, the traction is proportional to velocity, in contrast to
the misalignment observed in experiments.

• u-c-p model. Here we use the full equations of motion, coupling u

r

to both c and p

r

and are able to
quanitatively reproduce the experimental trends (Fig. 3).
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Model parameters. While the model parameters are cell-type dependent, they are chosen so as to quanti-
tatively reproduce our experimental data on MDCK cell monolayers for traction, velocity and intercellular
stress. Specifically, the radius of the cell monolayer is taken to be R = 350 µm and the values of the elastic
moduli, B and G, and the contractile stress b are taken to be of the same order of magnitude with the exper-
imentally measured effective elastic modulus K of the monolayer. The values of the timescales regulating
the chemical dynamics, t and a�1, are tuned so as reproduce the experimentally measured time period of
oscillations ⇠ 6 hrs. The remaining values are chosen within the order of magnitudes reported in prior
literature. A complete list of the parameter values is given in Supporting Table S1.

Supporting Table S1: Model parameters.
Parameter Physical Meaning Numerical Value

z Viscous friction with the substrate 0.2 Pa hr/µm
f

Propulsion force 10 Pa
R

Monolayer radius 350 µm
h Monolayer thickness 3 µm
B Bulk elastic modulus 300 Pa
G

Shear elastic modulus 200 Pa
b Magnitude of the active stress 600 Pa
t Timescale of relaxation of c 1.17 hrs
a Rate of production of c due to cell stretching 2.14 hr�1

a

Rate of relaxation to a homogeneously polar state 0.78 hr�1

k Stiffness constant characterizing the cost of local changes in p 8.75 µm2/min
w Controls the rate of alignment of p with the gradients of c 2.08 µm/min

Experimental validation of the model predictions.

• Contractile activity generates effective elasticity and mechanical waves. Our model predicts that
the coupling between contractility and the monolayer strain yields an effective bulk modulus, K =
B+at(b + f w/2ah) that is greater than the passive bulk elastic modulus of the material (13). Fur-
thermore, in our model waves arise due to a local feedback between rate of production of c and
mechanical strain in the monolayer. This is consistent with our experimental data which shows that
the treatment with blebbistatin (an inhibitor of myosin-based contractility) reduces the effective elastic
modulus K of the cell monolayer by an order of magnitude and eliminates the waves (Fig. 4 a–d).

• Cell polarization aligns with the gradients of contractile tension. Our minimal model incorporates
feedback between p and c such that ∂

t

p µ —(c/c0). Because the active stress s
a

goes as log(c/c0),
we expect that ∂

t

p µ —s . Furthermore, since T = z v� f p, and v averages to 0 over one period of
oscillation, we expect that h∂ (�T)/∂ ti ⇠ h—si, where the angular brackets denote time average over
one period of oscillations. When we compare directions of h∂ (�T)/∂ ti and h—si, we find alignment
(Supporting Fig. S10).

• Cell polarization exists even in the absence of contractility. Our experimental data show that after
treatment with blebbistatin, the traction and the velocity field of the monolayer are misaligned on av-
erage, with the traction vectors pointing radially inward at the perimeter of the island and cell motion
polarized radially outwards (Supporting Fig. S11). This behavior of cells to polarize their motion
radially outward is consistent with the results of the u–p model that reproduces the anti-alignment
between traction and velocity in the absence of contractility (Supporting Fig. S6 d,e).
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• Scaling of the time period with monolayer size. A linear stability analysis of our continuum model
predicts a characteristic frequency of oscillatory waves in the monolayer given by (13),

w0(q)' q

p
hK/tz , (22)

where q is the radial wave vector. At length scales comparable to the monolayer size, q ' 1/R, we get
the following analytical expression for the time period,

T ' 2pR

p
tz/hK . (23)

Our model thus predicts a linear scaling relation between the time period of oscillations and the
monolayer radius, in agreement with experimental measurements (7).
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Supporting Figures

R
ad

ia
l v

el
oc

ity
An

gu
la

r v
el

oc
ity

-1

0

1 µm/min

200 µm

160 min 400 min 640 mina

b

c
<uθ> / <ur>

0

0.5

1

1.5

2d

Supporting Figure S1: Full velocity field of the the monolayer shown in Fig. 1. (a) Phase contrast images at three
different time points. (b, c) Radial (b) and angular (c) components of the cellular velocity. (d) The velocity components
in the angular uq and radial u

r

directions are computed, and the root-mean-square (RMS, denoted by brackets < ·>)
is taken across the entire island. The ratio of the RMS angular velocity to the RMS radial velocity, <uq > / <u

r

>,
is then plotted for various different cell islands. Each dot represents one cell island; the horizontal line represents the
mean over all islands.
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Supporting Figure S2: In expanding cellular monolayers, cellular tractions align in a different direction than
cellular velocities. (a) MDCK cells are micropatterned into 700 µm islands using a PDMS mask on a polyacrylamide
gel. When the mask is removed, the cells migrate outward. Times are in minutes after removing the mask. (b) Cell
velocities are measured using particle image velocimetry, and the radial component of the velocity vector is plotted.
The positive direction (red) represents outward motion. At early times (220 min), cells at the periphery move outward;
later (300 min), all cells move outward. Once the island is fully spread (720 min), cells move either inward or outward.
(c) Radial component of traction applied by the cells to the substrate. Areas in blue indicate regions where the cells pull
inward on the substrate; this inward force, if unbalanced, would accelerate the cells outward. The relationship between
velocity and traction is evaluated with Pearson’s correlation coefficient, R. (d, e) Kymographs of radial velocity (d)
and radial traction (e). At all points in time, neither the spatial map of tractions (c) nor the averaged tractions (e)
correlate with the velocity. (f) Histogram of the angle between the velocity and traction vectors. Each gray line shows
a single point in time for the cell island; the blue line shows all points in time.
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Supporting Figure S3: Gradients in local number density do not drive collective motion in expanding or con-
fined monolayers. (a) Phase contrast image of MDCK cells in an expanding island 720 min after removing the mask.
(b–d) The radial components of velocity (b) and traction (c) are uncorrelated with the radial component of the density
gradient (d) (Pearson’s correlation coefficient R = -0.06 and 0.07, respectively). (e–h) For a confined monolayer (e),
radial velocity (f) and radial traction (g) are similarly uncorrelated with the radial component of density gradient (h)
(Pearson’s correlation coefficient R = 0.03 and -0.12, respectively). (i–l) Histograms of the angle between the direc-
tions of density gradient and velocity (i, k) or density gradient and traction (j, l) for the expanding (i, j) or confined
(k, l) islands. Each gray line shows the histogram for a single point in time for a cell island; the blue lines show
histograms for all points in time. Computation of all density gradients reports data points located at least 50 µm from
the boundary of the cell island so as to avoid errors in computing the density gradient near the outside of the island
where density is zero.
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Supporting Figure S4: Negligible viscous stress in the monolayer. To investigate the role of viscosity in the
monolayer, the tension (defined as the mean of the principal stresses) is compared to the sum of the principal strain
rates, and the maximal shearing stress (defined as half the difference of the principal stresses) is compared to the
difference of the principal strain rates. The data shown is for the cell island of Fig. 1 at time points 160, 400, and
640 min. Each dot represents a different location in the island; the blue lines show linear fits. Correlation coefficient
magnitudes are typically smaller than 0.1, indicating viscosity has a negligible contribution to the stress tensor.
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Supporting Figure S5: The elasticity of the monlayer is tested using an expanding island of MDCK cells. (a)
As shown in the kymograph of radial velocity, when a circular island of cells expands outward, a wave of motion
propagates from the periphery to the interior. (b) Kymograph of cell area showing area increases when each cell
begins to move. (c) Kymograph of tension shows tension within each cell increases as area increases. (d) A trace
of the kymographs of area strain rate de/dt (defined as the trace of the rate-of-strain tensor) and time derivative of
tension ds/dt along a radial position of 100 µm shows a correlation (Pearson’s correlation coefficient R = 0.67). (e)
A scatter plot of all points in space and time for this monolayer shows ds/dt is correlated with de/dt (R = 0.64),
indicating elastic behavior with a modulus K (given by the slope of a linear fit) of 71 Pa.
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Supporting Figure S6: Limiting cases of the minimal physical model. (a–c) u-c model: Deformation u is coupled
to c only. The polarization field p is set to zero and t = 0.12 hrs. Rest of the parameters are the same as in Supporting
Table S1. In this case we obtain standing waves seen in the kymograph of velocity (a) qualitatively similar to our
experiments. However, the traction (b) is proportional to velocity and is very different from the traction observed
in our experiments. The monolayer tension (c) oscillated out of phase with velocity with both positive and negative
values in disagreement to our experimental data. (d–f) u-p model: Deformation u is coupled to p only with the
concentration field c set to its equilibrium value c0. Simulation parameters are the same as in Supporting Table S1. In
this case no wave-like behavior is obtained, indicating that the feedback between mechanical strain and the regulatory
biochemistry of c is essential to explain the presence of wave-like dynamics.
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Supporting Figure S7: ERK inhibition. The ERK inhibitor U0126 (10 µM) decreases the velocity and eliminates
the waves. (a) Kymograph of velocity shows no waves of cellular motion are present. (b) Compared to control, cell
islands treated with U0126 move at a slower speed. (c) Compared to control, treatment with U0126 reduces the elastic
modulus K. For the plots in (b) and (c), each dot corresponds to a different cell island. P values are computed using a
rank sum statistical test.

Supporting Figure S8: Dynamics of the internal state variables in the cell monolayer. (a) Kymograph of the
polarization field in the full u-c-p model shows that cells at the boundary and at the center of the monolayer are
polarized outwards separated by a band of inward polarized cells. (b) Kymograph of the concentration field in the full
u-c-p model showing oscillations similar to the monolayer tension. (c) In the absence of coupling to c, the polarization
field is uniform and points radially outward. (d) Kymograph of the concentration field in the absence of coupling to
polarization field.

14



200 µm -400

0

400 Pa

(σ1-σ2) / (σ1+σ2)
0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y 
(%

)
0

5

10

15

a b

c d

(σ1 + σ2)/2 (σ1 - σ2)/2

Supporting Figure S9: The stress tensor within the circular monolayers is isotropic. The first and second prin-
cipal stresses, s1 and s2, are computed. (a, b) Representative plots of the mean principal stress, (s1 +s2)/2 (a) and
the maximum shear stress, (s1 �s2)/2 (b) for a circular monolayer at one point in time. (c) Visualization of the stress
tensor in the monolayer where the major and minor axes of each ellipse correspond to the magnitude of s1 and s2,
and the orientation of the major axis corresponds to the orientation of the first principal stress s1. An ellipse that is
more circular indicates a stress tensor that is more isotropic. (d) As a measure of stress isotropy, the difference in the
principal stresses is divided by the sum of the principal stresses with a value of zero indicating a fully isotropic state.
Histograms of (s1 �s2)/(s1 +s2) are generated for each point in time (gray lines) and for all time points (blue line).
The mean and median are <0.2, indicating the stress tensor is nearly isotropic.
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Supporting Figure S10: Cells polarize along gradients of contractility. The difference in the orientations of the
gradient of tension, qh—si, and the opposite of the time derivative of traction, qh∂ (�T)/∂ ti, is plotted as a histogram for
various points in time (gray lines) and for all time points (blue line). Here, the angle brackets represent a time average
over one period of oscillation. The peak near zero indicates that directions of h—si and h∂ (�T)/∂ ti tend to align, in
agreement with the model. The alignment between directions of h—si and h∂ (�T)/∂ ti means that the cell tractions
evolve in time so as to propel the cells towards regions of high tension.
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Supporting Figure S11: Blebbistatin treatment. Kymographs of (a) radial velocity and (b) radial traction for a
cell island treated with blebbistatin (20 µM). The tractions are generally aligned in the opposite direction as the radial
velocity. The observed anti-alignment agrees with the model when contractility is inhibited (Supporting Fig. S6 d–f).
In this figure, panel (a) is the same as Fig. 4a.
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Supporting Movie Legends

Supporting Movie 1: Oscillations of motion in a cell monolayer. Left: phase contrast; right: nuclei expressing
green fluorescent protein.

Supporting Movie 2: Motion of a cell monolayer treated with blebbistatin. Left: phase contrast; right: nuclei
expressing green fluorescent protein.
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