164 research outputs found

    Analysis of the interaction of monoclonal antibodies with surface IgM on neoplastic B-cells

    Get PDF
    In vitro studies identified three Burkitts lymphoma cell lines, Ramos, MUTU-I and Daudi, that were growth inhibited by anti-IgM antibody. However, only Ramos and MUTU-I were sensitive to monoclonal antibodies (mAb) recognizing the Fc region of surface IgM (anti-Fcμ). Experiments using anti-Fcμ mAb (single or non-crossblocking pairs), polyclonal anti-μ Ab, and hyper-crosslinking with a secondary layer of Ab, showed that growth inhibition of B-cell lines was highly dependent on the extent of IgM crosslinking. This was confirmed by using Fab′, F(ab′)2and F(ab′)3derivatives from anti-Fcμ mAb, where increasing valency caused corresponding increases in growth arrest and apoptosis, presumably as a result of more efficient BCR-crosslinking on the cell surface. The ability of a single mAb to induce growth arrest was highly dependent on epitope specificity, with mAb specific for the Fc region (Cμ2–Cμ4 domains) being much more effective than those recognizing the Fab region (anti-L chain, anti-Id and anti-Fdμ, or Cμ1). Only when hyper-crosslinked with polyclonal anti-mouse IgG did the latter result in appreciable growth inhibition. Binding studies showed that these differences in function were not related to differences in the affinity, but probably related to intrinsic crosslinking capacity of mAb. © 1999 Cancer Research Campaig

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Characterization of the SNAG and SLUG Domains of Snail2 in the Repression of E-Cadherin and EMT Induction: Modulation by Serine 4 Phosphorylation

    Get PDF
    Snail1 and Snail2, two highly related members of the Snail superfamily, are direct transcriptional repressors of E-cadherin and EMT inducers. Previous comparative gene profiling analyses have revealed important differences in the gene expression pattern regulated by Snail1 and Snail2, indicating functional differences between both factors. The molecular mechanism of Snail1-mediated repression has been elucidated to some extent, but very little is presently known on the repression mediated by Snail2. In the present work, we report on the characterization of Snail2 repression of E-cadherin and its regulation by phosphorylation. Both the N-terminal SNAG and the central SLUG domains of Snail2 are required for efficient repression of the E-cadherin promoter. The co-repressor NCoR interacts with Snail2 through the SNAG domain, while CtBP1 is recruited through the SLUG domain. Interestingly, the SNAG domain is absolutely required for EMT induction while the SLUG domain plays a negative modulation of Snail2 mediated EMT. Additionally, we identify here novel in vivo phosphorylation sites at serine 4 and serine 88 of Snail2 and demonstrate the functional implication of serine 4 in the regulation of Snail2-mediated repressor activity of E-cadherin and in Snail2 induction of EMT

    Effects of IKAP/hELP1 Deficiency on Gene Expression in Differentiating Neuroblastoma Cells: Implications for Familial Dysautonomia

    Get PDF
    Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1 deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells and contribute to the understanding of the FD phenotype

    Massage Therapy for Osteoarthritis of the Knee: A Randomized Dose-Finding Trial

    Get PDF
    In a previous trial of massage for osteoarthritis (OA) of the knee, we demonstrated feasibility, safety and possible efficacy, with benefits that persisted at least 8 weeks beyond treatment termination.We performed a RCT to identify the optimal dose of massage within an 8-week treatment regimen and to further examine durability of response. Participants were 125 adults with OA of the knee, randomized to one of four 8-week regimens of a standardized Swedish massage regimen (30 or 60 min weekly or biweekly) or to a Usual Care control. Outcomes included the Western Ontario and McMaster Universities Arthritis Index (WOMAC), visual analog pain scale, range of motion, and time to walk 50 feet, assessed at baseline, 8-, 16-, and 24-weeks.WOMAC Global scores improved significantly (24.0 points, 95% CI ranged from 15.3-32.7) in the 60-minute massage groups compared to Usual Care (6.3 points, 95% CI 0.1-12.8) at the primary endpoint of 8-weeks. WOMAC subscales of pain and functionality, as well as the visual analog pain scale also demonstrated significant improvements in the 60-minute doses compared to usual care. No significant differences were seen in range of motion at 8-weeks, and no significant effects were seen in any outcome measure at 24-weeks compared to usual care. A dose-response curve based on WOMAC Global scores shows increasing effect with greater total time of massage, but with a plateau at the 60-minute/week dose.Given the superior convenience of a once-weekly protocol, cost savings, and consistency with a typical real-world massage protocol, the 60-minute once weekly dose was determined to be optimal, establishing a standard for future trials.ClinicalTrials.gov NCT00970008

    A Test of Evolutionary Policing Theory with Data from Human Societies

    Get PDF
    In social groups where relatedness among interacting individuals is low, cooperation can often only be maintained through mechanisms that repress competition among group members. Repression-of-competition mechanisms, such as policing and punishment, seem to be of particular importance in human societies, where cooperative interactions often occur among unrelated individuals. In line with this view, economic games have shown that the ability to punish defectors enforces cooperation among humans. Here, I examine a real-world example of a repression-of-competition system, the police institutions common to modern human societies. Specifically, I test evolutionary policing theory by comparing data on policing effort, per capita crime rate, and similarity (used as a proxy for genetic relatedness) among citizens across the 26 cantons of Switzerland. This comparison revealed full support for all three predictions of evolutionary policing theory. First, when controlling for policing efforts, crime rate correlated negatively with the similarity among citizens. This is in line with the prediction that high similarity results in higher levels of cooperative self-restraint (i.e. lower crime rates) because it aligns the interests of individuals. Second, policing effort correlated negatively with the similarity among citizens, supporting the prediction that more policing is required to enforce cooperation in low-similarity societies, where individuals' interests diverge most. Third, increased policing efforts were associated with reductions in crime rates, indicating that policing indeed enforces cooperation. These analyses strongly indicate that humans respond to cues of their social environment and adjust cheating and policing behaviour as predicted by evolutionary policing theory

    Biology-driven cancer drug development: back to the future

    Get PDF
    Most of the significant recent advances in cancer treatment have been based on the great strides that have been made in our understanding of the underlying biology of the disease. Nevertheless, the exploitation of biological insight in the oncology clinic has been haphazard and we believe that this needs to be enhanced and optimized if patients are to receive maximum benefit. Here, we discuss how research has driven cancer drug development in the past and describe how recent advances in biology, technology, our conceptual understanding of cell networks and removal of some roadblocks may facilitate therapeutic advances in the (hopefully) near future

    An NF-κB and Slug Regulatory Loop Active in Early Vertebrate Mesoderm

    Get PDF
    BACKGROUND: In both Drosophila and the mouse, the zinc finger transcription factor Snail is required for mesoderm formation; its vertebrate paralog Slug (Snai2) appears to be required for neural crest formation in the chick and the clawed frog Xenopus laevis. Both Slug and Snail act to induce epithelial to mesenchymal transition (EMT) and to suppress apoptosis. METHODOLOGY & PRINCIPLE FINDINGS: Morpholino-based loss of function studies indicate that Slug is required for the normal expression of both mesodermal and neural crest markers in X. laevis. Both phenotypes are rescued by injection of RNA encoding the anti-apoptotic protein Bcl-xL; Bcl-xL's effects are dependent upon IκB kinase-mediated activation of the bipartite transcription factor NF-κB. NF-κB, in turn, directly up-regulates levels of Slug and Snail RNAs. Slug indirectly up-regulates levels of RNAs encoding the NF-κB subunit proteins RelA, Rel2, and Rel3, and directly down-regulates levels of the pro-apopotic Caspase-9 RNA. CONCLUSIONS/SIGNIFICANCE: These studies reveal a Slug/Snail–NF-κB regulatory circuit, analogous to that present in the early Drosophila embryo, active during mesodermal formation in Xenopus. This is a regulatory interaction of significance both in development and in the course of inflammatory and metastatic disease
    • …
    corecore