85 research outputs found

    An Automatic System to Discriminate Malignant from Benign Massive Lesions on Mammograms

    Full text link
    Mammography is widely recognized as the most reliable technique for early detection of breast cancers. Automated or semi-automated computerized classification schemes can be very useful in assisting radiologists with a second opinion about the visual diagnosis of breast lesions, thus leading to a reduction in the number of unnecessary biopsies. We present a computer-aided diagnosis (CADi) system for the characterization of massive lesions in mammograms, whose aim is to distinguish malignant from benign masses. The CADi system we realized is based on a three-stage algorithm: a) a segmentation technique extracts the contours of the massive lesion from the image; b) sixteen features based on size and shape of the lesion are computed; c) a neural classifier merges the features into an estimated likelihood of malignancy. A dataset of 226 massive lesions (109 malignant and 117 benign) has been used in this study. The system performances have been evaluated terms of the receiver-operating characteristic (ROC) analysis, obtaining A_z = 0.80+-0.04 as the estimated area under the ROC curve.Comment: 6 pages, 3 figures; Proceedings of the ITBS 2005, 3rd International Conference on Imaging Technologies in Biomedical Sciences, 25-28 September 2005, Milos Island, Greec

    Size-structured populations: immigration, (bi)stability and the net growth rate

    Get PDF
    We consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearised system is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearised operator equals zero, i.e. when linearisation does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearised system exhibits bistability, for a certain range of values of the external inflow, induced potentially by All\'{e}e-effect.Comment: to appear in Journal of Applied Mathematics and Computin

    Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics

    Full text link
    We present a study by linear stability analysis and large-scale Monte Carlo simulations of a simple model of biological coevolution. Selection is provided through a reproduction probability that contains quenched, random interspecies interactions, while genetic variation is provided through a low mutation rate. Both selection and mutation act on individual organisms. Consistent with some current theories of macroevolutionary dynamics, the model displays intermittent, statistically self-similar behavior with punctuated equilibria. The probability density for the lifetimes of ecological communities is well approximated by a power law with exponent near -2, and the corresponding power spectral densities show 1/f noise (flicker noise) over several decades. The long-lived communities (quasi-steady states) consist of a relatively small number of mutualistically interacting species, and they are surrounded by a ``protection zone'' of closely related genotypes that have a very low probability of invading the resident community. The extent of the protection zone affects the stability of the community in a way analogous to the height of the free-energy barrier surrounding a metastable state in a physical system. Measures of biological diversity are on average stationary with no discernible trends, even over our very long simulation runs of approximately 3.4x10^7 generations.Comment: 20 pages RevTex. Minor revisions consistent with published versio

    Structured and unstructured continuous models for Wolbachia infections

    Get PDF
    We introduce and investigate a series of models for an infection of a diplodiploid host species by the bacterial endosymbiont Wolbachia. The continuous models are characterized by partial vertical transmission, cytoplasmic incompatibility and fitness costs associated with the infection. A particular aspect of interest is competitions between mutually incompatible strains. We further introduce an age-structured model that takes into account different fertility and mortality rates at different stages of the life cycle of the individuals. With only a few parameters, the ordinary differential equation models exhibit already interesting dynamics and can be used to predict criteria under which a strain of bacteria is able to invade a population. Interestingly, but not surprisingly, the age-structured model shows significant differences concerning the existence and stability of equilibrium solutions compared to the unstructured model

    Transfemoral versus transcarotid access for transcatheter aortic valve replacement

    Get PDF
    Objectives: To compare the outcomes after transcatheter aortic valve replacement (TAVR) through a transfemoral (TF) and transcarotid (TC) access at our institution. Methods: From January 2014 to January 2020, 62 TC-TAVR and 449 TF-TAVR were performed using 2 prosthesis devices (Edwards SAPIEN 3, n = 369; Medtronic Evolut R, n = 142). Propensity score matching was used to adjust for imbalance in the baseline characteristics of the study groups. Results: Propensity score matching provided 62 matched pairs with comparable operative risk (mean European System for Cardiac Operative Risk Evaluation II, TC-TAVR 7.6% vs TF-TAVR 6.6%, P = .17). Thirty-day mortality (4.8% vs 3.2%, P = 1.00) and 2-year mortality (11.3% vs 12.9%, P = .64) after TC-TAVR were comparable with TF-TAVR. Strokes were numerically more frequent after TC-TAVR compared with TF-TAVR (3.2% vs 0%, P = .23), but the difference did not reach statistical significance. TF-TAVR was associated with a significantly greater risk of permanent pacemaker implantation (29.0% vs 12.9%, P = .04) compared with TC-TAVR. Other complications were not frequent and were similarly distributed between the matched groups. Conclusions: TC access for TAVR was associated with satisfactory results compared to the femoral access. TC-TAVR could be considered a valid and safe alternative to TF-TAVR when femoral access is contraindicated. © 2022</p

    Developing a predictive modelling capacity for a climate change-vulnerable blanket bog habitat: Assessing 1961-1990 baseline relationships

    Get PDF
    Aim: Understanding the spatial distribution of high priority habitats and developing predictive models using climate and environmental variables to replicate these distributions are desirable conservation goals. The aim of this study was to model and elucidate the contributions of climate and topography to the distribution of a priority blanket bog habitat in Ireland, and to examine how this might inform the development of a climate change predictive capacity for peat-lands in Ireland. Methods: Ten climatic and two topographic variables were recorded for grid cells with a spatial resolution of 1010 km, covering 87% of the mainland land surface of Ireland. Presence-absence data were matched to these variables and generalised linear models (GLMs) fitted to identify the main climatic and terrain predictor variables for occurrence of the habitat. Candidate predictor variables were screened for collinearity, and the accuracy of the final fitted GLM was evaluated using fourfold cross-validation based on the area under the curve (AUC) derived from a receiver operating characteristic (ROC) plot. The GLM predicted habitat occurrence probability maps were mapped against the actual distributions using GIS techniques. Results: Despite the apparent parsimony of the initial GLM using only climatic variables, further testing indicated collinearity among temperature and precipitation variables for example. Subsequent elimination of the collinear variables and inclusion of elevation data produced an excellent performance based on the AUC scores of the final GLM. Mean annual temperature and total mean annual precipitation in combination with elevation range were the most powerful explanatory variable group among those explored for the presence of blanket bog habitat. Main conclusions: The results confirm that this habitat distribution in general can be modelled well using the non-collinear climatic and terrain variables tested at the grid resolution used. Mapping the GLM-predicted distribution to the observed distribution produced useful results in replicating the projected occurrence of the habitat distribution over an extensive area. The methods developed will usefully inform future climate change predictive modelling for Irelan

    Population genomics of post-glacial western Eurasia.

    Get PDF
    Western Eurasia witnessed several large-scale human migrations during the Holocene &lt;sup&gt;1-5&lt;/sup&gt; . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations
    corecore