We consider a class of physiologically structured population models, a first
order nonlinear partial differential equation equipped with a nonlocal boundary
condition, with a constant external inflow of individuals. We prove that the
linearised system is governed by a quasicontraction semigroup. We also
establish that linear stability of equilibrium solutions is governed by a
generalized net reproduction function. In a special case of the model
ingredients we discuss the nonlinear dynamics of the system when the spectral
bound of the linearised operator equals zero, i.e. when linearisation does not
decide stability. This allows us to demonstrate, through a concrete example,
how immigration might be beneficial to the population. In particular, we show
that from a nonlinearly unstable positive equilibrium a linearly stable and
unstable pair of equilibria bifurcates. In fact, the linearised system exhibits
bistability, for a certain range of values of the external inflow, induced
potentially by All\'{e}e-effect.Comment: to appear in Journal of Applied Mathematics and Computin