28 research outputs found

    Interactions, disorder and local defects in graphite

    Full text link
    Recent experiments report the existence of ferromagnetic and superconducting fluctuations in graphite at unexpectedly high temperatures. The interplay of disorder and interactions in a 2D graphene layer is shown to give rise to a rich phase diagram where strong coupling phases can become stable. Local defects can explain the ferromagnetic signals.Comment: Presented at SNS'2004, Sitges,Spain, July 11-16,2004, being considered for publication in Jour.Phys.Chem.Solid

    The Electronic Spectrum of Fullerenes from the Dirac Equation

    Full text link
    The electronic spectrum of sheets of graphite (plane honeycomb lattice) folded into regular polihedra is studied. A continuum limit valid for sufficiently large molecules and based on a tight binding approximation is derived. It is found that a Dirac equation describes the flat graphite lattice. Curving the lattice by insertion of odd numbered rings can be mimicked by coupling effective gauge fields. In particular the C60C_{60} and related molecules are well described by the Dirac equation on the surface of a sphere coupled to a color monopole sitting at its center.Comment: 29 pages, 7 figures. IASSNS-HEP-92/5

    Properties of electrons near a Van Hove singularity

    Full text link
    The Fermi surface of most hole-doped cuprates is close to a Van Hove singularity at the M point. A two-dimensional electronic system, whose Fermi surface is close to a Van Hove singularity shows a variety of weak coupling instabilities. It is a convenient model to study the interplay between antiferromagnetism and anisotropic superconductivity. The renormalization group approach is reviewed with emphasis on the underlying physical processes. General properties of the phase diagram and possible deformations of the Fermi surface due to the Van Hove proximity are described.Comment: Proceedings of SNS-01 to appear in the Journal of Physics and Chemistry of Solids, SNS-0

    Renormalization Group Approach to the Normal State of Copper-Oxide Superconductors

    Full text link
    We study by means of renormalization group techniques the effect that on the two-dimensional electron liquid may have the van Hove singularities observed experimentally in the copper-oxide superconductors. We find significant deviations from Fermi liquid behavior, that lead to the appearance of an unstable fixed point in the renormalization group flow of the effective coupling constant. Besides the attenuation of electron quasiparticles already known on phenomenological grounds, our approach is able to explain the reduction in the dispersion of the band as well as the pinning of the Fermi level near the singularity, as observed in the photoemission experiments.Comment: Latex manuscript, 29 pages, 4 postcript figure

    Indications of coherence-incoherence crossover in layered transport

    Get PDF
    For many layered metals the temperature dependence of the interlayer resistance has a different behavior than the intralayer resistance. In order to better understand interlayer transport we consider a concrete model which exhibits this behavior. A small polaron model is used to illustrate how the interlayer transport is related to the coherence of quasi-particles within the layers. Explicit results are given for the electron spectral function, interlayer optical conductivity and the interlayer magnetoresistance. All these quantities have two contributions: one coherent (dominant at low temperatures) and one incoherent (dominant at high temperatures).Comment: 6 pages, 4 figures, REVTEX

    Quantum field theory approach to the optical conductivity of strained and deformed graphene

    Get PDF
    The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.The authors acknowledge financial supportfrom the Brazilian agencies FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico)

    Interlayer hopping properties of electrons in layered metals

    Full text link
    A formalism is proposed to study the electron tunneling between extended states, based on the spin-boson Hamiltonian previously used in two-level systems. It is applied to analyze the out--of--plane tunneling in layered metals considering different models. By studying the effects of in--plane interactions on the interlayer tunneling of electrons near the Fermi level, we establish the relation between departure from Fermi liquid behavior driven by electron correlations inside the layer and the out of plane coherence. Response functions, directly comparable with experimental data are obtained

    Faraday rotation in graphene

    Full text link
    We study magneto--optical properties of monolayer graphene by means of quantum field theory methods in the framework of the Dirac model. We reveal a good agreement between the Dirac model and a recent experiment on giant Faraday rotation in cyclotron resonance. We also predict other regimes when the effects are well pronounced. The general dependence of the Faraday rotation and absorption on various parameters of samples is revealed both for suspended and epitaxial graphene.Comment: 10 pp; v2: typos corrected and references added, v3, v4: small changes and more reference

    Interplay between edge states and simple bulk defects in graphene nanoribbons

    Full text link
    We study the interplay between the edge states and a single impurity in a zigzag graphene nanoribbon. We use tight-binding exact diagonalization techniques, as well as density functional theory calculations to obtain the eigenvalue spectrum, the eigenfunctions, as well the dependence of the local density of states (LDOS) on energy and position. We note that roughly half of the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize with the impurity state, and the corresponding eigenvalues are shifted with respect to their unperturbed values. The maximum shift and hybridization occur for a state whose energy is inverse proportional to the impurity potential; this energy is that of the impurity peak in the DOS spectrum. We find that the interference between the impurity and the edge gives rise to peculiar modifications of the LDOS of the nanoribbon, in particular to oscillations of the edge LDOS. These effects depend on the size of the system, and decay with the distance between the edge and the impurity.Comment: 10 pages, 15 figures, revtex

    Scattering theory and ground-state energy of Dirac fermions in graphene with two Coulomb impurities

    Get PDF
    We study the physics of Dirac fermions in a gapped graphene monolayer containing two Coulomb impurities. For the case of equal impurity charges, we discuss the ground-state energy using the linear combination of atomic orbitals (LCAO) approach. For opposite charges of the Coulomb centers, an electric dipole potential results at large distances. We provide a nonperturbative analysis of the corresponding low-energy scattering problem
    corecore