16,112 research outputs found
Autocatalytic reaction-diffusion processes in restricted geometries
We study the dynamics of a system made up of particles of two different
species undergoing irreversible quadratic autocatalytic reactions: . We especially focus on the reaction velocity and on the average time at
which the system achieves its inert state. By means of both analytical and
numerical methods, we are also able to highlight the role of topology in the
temporal evolution of the system
Reset and switch protocols at Landauer limit in a graphene buckled ribbon
Heat produced during a reset operation is meant to show a fundamental bound
known as Landauer limit, while simple switch operations have an expected
minimum amount of produced heat equal to zero. However, in both cases,
present-day technology realizations dissipate far beyond these theoretical
limits. In this paper we present a study based on molecular dynamics
simulations, where reset and switch protocols are applied on a graphene buckled
ribbon, employed here as a nano electromechanical switch working at the
thermodynamic limit
Universal features of information spreading efficiency on -dimensional lattices
A model for information spreading in a population of mobile agents is
extended to -dimensional regular lattices. This model, already studied on
two-dimensional lattices, also takes into account the degeneration of
information as it passes from one agent to the other. Here, we find that the
structure of the underlying lattice strongly affects the time at which
the whole population has been reached by information. By comparing numerical
simulations with mean-field calculations, we show that dimension is
marginal for this problem and mean-field calculations become exact for .
Nevertheless, the striking nonmonotonic behavior exhibited by the final degree
of information with respect to and the lattice size appears to be
geometry independent.Comment: 8 pages, 9 figure
Autocatalytic reaction-diffusion processes in restricted geometries
We study the dynamics of a system made up of particles of two different
species undergoing irreversible quadratic autocatalytic reactions: . We especially focus on the reaction velocity and on the average time at
which the system achieves its inert state. By means of both analytical and
numerical methods, we are also able to highlight the role of topology in the
temporal evolution of the system
SHIP MOTION SHORT TERM TIME DOMAIN SIMULATOR AND ITS APPLICATION TO COSTA CONCORDIA EMERGENCY MANOEUVRES JUST BEFORE THE JANUARY 2012 ACCIDENT
In this paper we will present a simple but reliable methodology for short term prediction of a cruise ship behaviour during manoeuvres. The methodology is quite general and could be applied to any kind of ship, because it does not require the prior knowledge of any structural or mechanical parameter of the ship. It is based only on the results of manoeuvrability data contained in the Manoeuvring Booklet, which in turn is filled out after sea trials of the ship performed before his delivery to the owner.
We developed this method to support the investigations around the Costa Concordia shipwreck, which happened near the shores of Italy in January 2012. It was then validated against the data recorded in the “black box” of the ship, from which we have been able to extract an entire week of voyage data before the shipwreck. The aim was investigating the possibility of avoiding the impact by performing an evasive manoeuvre (as ordered by the Captain some seconds before the impact, but allegedly misunderstood by the helmsman). The preliminary validation step showed a good matching between simulated and real values (course and heading of the ship) for a time interval of a few minutes.
The fact that the method requires only the results registered in the VDR (Voyage Data Recorder) during sea trial tests, makes it very useful for several applications. Among them, we can cite forensic investigation, the development of components for autopilots, the prediction of the effects of a given manoeuvre in shallow water, the “a posteriori” verification of the correctness of a given manoeuvre and the use in training simulators for ship pilots and masters
Precision radiative corrections to the Dalitz plot of baryon semileptonic decays including the spin-momentum correlation of the decaying baryon and the emitted charged lepton
We calculate the radiative corrections to the angular correlation between the
polarization of the decaying baryon and the direction of the emitted charged
lepton in the semileptonic decays of spin one-half baryons to order
(\alpha/\pi)(q/M_1). The final results are presented, first, with the triple
integration of the bremsstrahlung photon ready to be performed numerically and,
second, in an analytical form. A third presentation of our results in the form
of numerical arrays of coefficients to be multiplied on the quadratic products
of form factors is discussed. This latter may be the most practical one to use
in Monte Carlo simulations. A series of crosschecks is performed. The results
are useful in the analysis of the Dalitz plot of precision experiments
involving light and heavy quarks and is not compromised to fixing the form
factors at predetermined values. It is assumed that the real photons are
kinematically discriminated. Otherwise, our results have a general
model-independent applicability.Comment: 8 pages, RevTex4, 5 tables, no figures. Shortened version; results
and conclusions remain unchange
The meaning of different forms of structural myocardial injury, immune response and timing of infarct necrosis and cardiac repair
Although a decline in the all-cause and cardiac mortality rates following myocardial infarction (MI) during the past 3 decades has been reported, MI is a major cause of death and disability worldwide. From a pathological point of view MI consists in a particular myocardial cell death due to prolonged ischemia. After the onset of myocardial ischemia, cell death is not immediate, but takes a finite period of time to develop. Once complete myocytes’ necrosis has occurred, a process leading to a healed infarction takes place. In fact, MI is a dynamic process that begins with the transition from reversible to irreversible ischemic injury and culminates in the replacement of dead myocardium by a fibrous scar. The pathobiological mechanisms underlying this process are very complex, involving an inflammatory response by several pathways, and pose a major challenge to ability to improve our knowledge. An improved understanding of the pathobiology of cardiac repair after MI and further studies of its underlying mechanisms provide avenues for the development of future strategies directed toward the identification of novel therapies. The chronologic dating of MI is of great importance both to clinical and forensic investigation, that is, the ability to create a theoretical timeline upon which either clinicians or forensic pathologists may increase their ability to estimate the time of MI. Aging of MI has very important practical implications in clinical practice since, based on the chronological dating of MI, attractive alternatives to solve therapeutic strategies in the various phases of MI are developing
- …