16,112 research outputs found

    Autocatalytic reaction-diffusion processes in restricted geometries

    Get PDF
    We study the dynamics of a system made up of particles of two different species undergoing irreversible quadratic autocatalytic reactions: A+B→2AA + B \to 2A. We especially focus on the reaction velocity and on the average time at which the system achieves its inert state. By means of both analytical and numerical methods, we are also able to highlight the role of topology in the temporal evolution of the system

    Reset and switch protocols at Landauer limit in a graphene buckled ribbon

    Full text link
    Heat produced during a reset operation is meant to show a fundamental bound known as Landauer limit, while simple switch operations have an expected minimum amount of produced heat equal to zero. However, in both cases, present-day technology realizations dissipate far beyond these theoretical limits. In this paper we present a study based on molecular dynamics simulations, where reset and switch protocols are applied on a graphene buckled ribbon, employed here as a nano electromechanical switch working at the thermodynamic limit

    Universal features of information spreading efficiency on dd-dimensional lattices

    Full text link
    A model for information spreading in a population of NN mobile agents is extended to dd-dimensional regular lattices. This model, already studied on two-dimensional lattices, also takes into account the degeneration of information as it passes from one agent to the other. Here, we find that the structure of the underlying lattice strongly affects the time Ď„\tau at which the whole population has been reached by information. By comparing numerical simulations with mean-field calculations, we show that dimension d=2d=2 is marginal for this problem and mean-field calculations become exact for d>2d > 2. Nevertheless, the striking nonmonotonic behavior exhibited by the final degree of information with respect to NN and the lattice size LL appears to be geometry independent.Comment: 8 pages, 9 figure

    Autocatalytic reaction-diffusion processes in restricted geometries

    Full text link
    We study the dynamics of a system made up of particles of two different species undergoing irreversible quadratic autocatalytic reactions: A+B→2AA + B \to 2A. We especially focus on the reaction velocity and on the average time at which the system achieves its inert state. By means of both analytical and numerical methods, we are also able to highlight the role of topology in the temporal evolution of the system

    SHIP MOTION SHORT TERM TIME DOMAIN SIMULATOR AND ITS APPLICATION TO COSTA CONCORDIA EMERGENCY MANOEUVRES JUST BEFORE THE JANUARY 2012 ACCIDENT

    Get PDF
    In this paper we will present a simple but reliable methodology for short term prediction of a cruise ship behaviour during manoeuvres. The methodology is quite general and could be applied to any kind of ship, because it does not require the prior knowledge of any structural or mechanical parameter of the ship. It is based only on the results of manoeuvrability data contained in the Manoeuvring Booklet, which in turn is filled out after sea trials of the ship performed before his delivery to the owner. We developed this method to support the investigations around the Costa Concordia shipwreck, which happened near the shores of Italy in January 2012. It was then validated against the data recorded in the “black box” of the ship, from which we have been able to extract an entire week of voyage data before the shipwreck. The aim was investigating the possibility of avoiding the impact by performing an evasive manoeuvre (as ordered by the Captain some seconds before the impact, but allegedly misunderstood by the helmsman). The preliminary validation step showed a good matching between simulated and real values (course and heading of the ship) for a time interval of a few minutes. The fact that the method requires only the results registered in the VDR (Voyage Data Recorder) during sea trial tests, makes it very useful for several applications. Among them, we can cite forensic investigation, the development of components for autopilots, the prediction of the effects of a given manoeuvre in shallow water, the “a posteriori” verification of the correctness of a given manoeuvre and the use in training simulators for ship pilots and masters

    Precision radiative corrections to the Dalitz plot of baryon semileptonic decays including the spin-momentum correlation of the decaying baryon and the emitted charged lepton

    Full text link
    We calculate the radiative corrections to the angular correlation between the polarization of the decaying baryon and the direction of the emitted charged lepton in the semileptonic decays of spin one-half baryons to order (\alpha/\pi)(q/M_1). The final results are presented, first, with the triple integration of the bremsstrahlung photon ready to be performed numerically and, second, in an analytical form. A third presentation of our results in the form of numerical arrays of coefficients to be multiplied on the quadratic products of form factors is discussed. This latter may be the most practical one to use in Monte Carlo simulations. A series of crosschecks is performed. The results are useful in the analysis of the Dalitz plot of precision experiments involving light and heavy quarks and is not compromised to fixing the form factors at predetermined values. It is assumed that the real photons are kinematically discriminated. Otherwise, our results have a general model-independent applicability.Comment: 8 pages, RevTex4, 5 tables, no figures. Shortened version; results and conclusions remain unchange

    The meaning of different forms of structural myocardial injury, immune response and timing of infarct necrosis and cardiac repair

    Get PDF
    Although a decline in the all-cause and cardiac mortality rates following myocardial infarction (MI) during the past 3 decades has been reported, MI is a major cause of death and disability worldwide. From a pathological point of view MI consists in a particular myocardial cell death due to prolonged ischemia. After the onset of myocardial ischemia, cell death is not immediate, but takes a finite period of time to develop. Once complete myocytes’ necrosis has occurred, a process leading to a healed infarction takes place. In fact, MI is a dynamic process that begins with the transition from reversible to irreversible ischemic injury and culminates in the replacement of dead myocardium by a fibrous scar. The pathobiological mechanisms underlying this process are very complex, involving an inflammatory response by several pathways, and pose a major challenge to ability to improve our knowledge. An improved understanding of the pathobiology of cardiac repair after MI and further studies of its underlying mechanisms provide avenues for the development of future strategies directed toward the identification of novel therapies. The chronologic dating of MI is of great importance both to clinical and forensic investigation, that is, the ability to create a theoretical timeline upon which either clinicians or forensic pathologists may increase their ability to estimate the time of MI. Aging of MI has very important practical implications in clinical practice since, based on the chronological dating of MI, attractive alternatives to solve therapeutic strategies in the various phases of MI are developing
    • …
    corecore