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Abstract: Although a decline in the all-cause and cardiac mortality rates following myocardial infarction (MI) 
during the past 3 decades has been reported, MI is a major cause of death and disability worldwide. From a 
pathological point of view MI consists in a particular myocardial cell death due to prolonged ischemia. After 
the onset of myocardial ischemia, cell death is not immediate, but takes a finite period of time to develop. Once 
complete myocytes’ necrosis has occurred, a process leading to a healed infarction takes place. In fact, MI is a dynamic proc-
ess that begins with the transition from reversible to irreversible ischemic injury and culminates in the replacement of dead 
myocardium by a fibrous scar. The pathobiological mechanisms underlying this process are very complex, involving an in-
flammatory response by several pathways, and pose a major challenge to ability to improve our knowledge. An improved un-
derstanding of the pathobiology of cardiac repair after MI and further studies of its underlying mechanisms provide avenues 
for the development of future strategies directed toward the identification of novel therapies. The chronologic dating of MI is
of great importance both to clinical and forensic investigation, that is, the ability to create a theoretical timeline upon which 
either clinicians or forensic pathologists may increase their ability to estimate the time of MI. Aging of MI has very important
practical implications in clinical practice since, based on the chronological dating of MI, attractive alternatives to solve thera-
peutic strategies in the various phases of MI are developing. 

Keywords: Biomolecular mechanisms, cardiac repair, cellular mechanisms, histomorphological dating, myocardial infarction, 
therapeutic strategies.  

INTRODUCTION  

 Although a decline in the all-cause and cardiac mortality 
rates following MI during the past 3 decades has been re-
ported [1-4], MI is a major cause of death and disability 
worldwide. From a clinical point of view the term MI can be 
used when there is evidence of myocardial necrosis in a 
clinical setting consistent with acute myocardial ischemia [5, 
6]. MI can be recognized by clinical features, including elec-
trocardiographic findings, elevated values of biochemical 
markers of myocardial necrosis, and by imaging [5]. From a 
pathological point of view MI consists in a particular myo-
cardial cell death due to prolonged ischemia. After the onset 
of myocardial ischemia, cell death is not immediate, but 
takes a finite period of time to develop. Once complete myo-
cytes’ necrosis has occurred, a process leading to a healed 
infarction takes place. In fact, MI is a dynamic process that 
begins with the transition froms reversible to irreversible 
ischemic injury and culminates in the replacement of dead 
myocardium by a fibrous scar [7].
 The pathobiological mechanisms underlying this process 
are very complex, involving an inflammatory response by 
several pathways, and pose a major challenge to ability to  
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improve our knowledge. As well as the definition of MI has 
important and immediate therapeutic implications, in the 
clinical practice the full comprehension of the repairing car-
diac process following MI is of paramount importance for 
the development of potentially myocardial engineering-based 
therapies [8]. An improved understanding of the pathobiol-
ogy of cardiac repair after MI and further studies of its un-
derlying mechanisms provide avenues for the development 
of future strategies directed toward the identification of 
novel therapies.  
 This review retraces the pathomorphological mechanisms 
involved in evolving MI and their contributions to cardiac 
repair.  

DIFFERENT FORMS OF STRUCTURAL MYOCAR-
DIAL INJURY 
 The myocardial cycle of contraction – relaxation can be 
interrupted acutely in irreversible contraction or relaxation or 
chronically by a progressive loss of function, showing pathog-
nomonic structural aspects. Apart from atonic death which is 
typical of MI and which will be discussed below, other mor-
phological forms of myocardial necrosis exist, each of them 
bearing a different functional meaning. The different forms of 
myocardial injury have totally different structural, dysfunc-
tional, and biochemical characteristics.  
 The myocardial cells can arrest in irreversible hypercon-
traction (tetanic death). The first histological change, visible 
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within 10 min of onset, is an intense hypereosinophilia of the 
hypercontracted myocardial cells with rhexis of the myofi-
brillar apparatus into cross-fiber, anomalous, and irregular or 
pathological bands. Marked shortness of sarcomeres with a 
length much less than that observed in normal contraction 
and with a characteristic anomalous, extreme thickening of Z 
lines are the morphological hallmarks of this model of myo-
cardial death. This myofibrillar rhexis is probably due to the 
mechanical, rhythmic action of the normal contracting myo-
cardium which surrounds rigid hypercontracted elements and 
may range from a few contraction bands to total granular 
destruction of myofibrils (myofibrillar degeneration). Repair 
of the pancellular lesion is by macrophagic digestion of all 
structures within the sarcolemmal tubes (alveolar pattern) 
followed by a progressive collagenization. The other pattern 
is characterized by a unique band of 10 – 20 hypercontracted 
sarcomeres close to the intercalated disc (paradiscal lesion). 
This band does not show rhexis of myofibrils and may as-
sume a dark, dense, ultrastructural aspect or a pale, clear one, 
with very thin Z-lines and myofibrils, and mitochondria 
“squeezed” in the normal portion of the myocyte. The para-
discal lesion does not show any macrophagic infiltrates [9, 
10]. This model of death (coagulative myocytolysis or con-
traction band necrosis, CBN) is experimentally reproduced 
by intravenous catecholamine infusion and we consider it an 
important histological hallmark of adrenergic stress linked 
with peroxidation caused by a variety of mechanisms, intrin-
sic or extrinsic to the heart [10-13]. In the literature CBN has 
been considered an ischemic change since it is found associ-
ated with and is reproduced by experimental reperfusion. 
This impression may have been induced by animal models of 
permanent and temporary coronary occlusion. From experi-
ence with the dogs, a coronary occlusion of the left circum-
flex branch of 60 min duration produces a small subendocar-
dial infarct characterized by stretched myocells with promi-
nent I-bands. However when the coronary occlusion lasts 
only 40 min followed by 20 min reflow, the histological pat-
tern transforms into typical CBN that was interpreted as 
ischemic. In further experiments by prolongation of occlu-
sion and/or reperfusion time, transmural (wavefront phe-
nomenon) myocardial changes mainly formed by CBN asso-
ciated with marked interstitial hemorrhage were obtained 
[10, 14-16]. The lesion is unrelated to ischemia. Its presence 
in acute coronary syndromes is probably due to catechola-
mines released within the myocardium as a reflex response 
[17] to regional asynergy of the infarcted or preinfarcted 
zone, a hypothesis that is supported by the abolishment of 
contraction bands and ventricular fibrillation with beta-
blocking agents in experimental MI and in reperfusion ne-
crosis. They may trigger a catecholamine myotoxicity linked 
with ventricular fibrillation and acting through free radical 
mediated lipid peroxidation with intramyocellular Ca2+ in-
flux. Contrary to the general opinion that excess catechola-
mines produce cardiotoxicity mainly through binding to 
adren-oceptors, there is increasing evidence that catechola-
mine induced deleterious actions may also occur through 
oxidative mechanisms [18, 19] which undoubtedly occur 
during myocardial reperfusion after ischemia [20-24].  
 The failing death of myocells (colliquative myocytolysis) 
is characterized by progressive loss of myofibrils paralleled 
by intramyocellular edema. This process starts around appar-

ently normal nuclei with myofibrillar disappearance produc-
ing an increasing vacuolization of myocardial cells until a 
histologic pattern of empty sarcolemmal tubes without any 
cellular reaction or signs of healing results [25]. Myocytoly-
sis or vacuolization is often interpreted as a histological sign 
of myocardial ischemia; colliquative myocytolysis is the his-
tological hallmark of congestive heart failure, independent of 
its underlying cause; including acute MI in which colliquative 
myocytolysis expresses a secondary nonischemic complica-
tion involving subendocardial and perivascular myocardium 
preserved in infarct necrosis [26, 27]. 

PATHO-MORPHOLOGY OF ACUTE MYOCARDIAL 
ISCHEMIA 

 Myocardial infarct necrosis is caused by a reduction be-
low a critical point of the nutrient blood flow. More than 
95% of the energy required for cardiac myocyte function is 
derived from oxidative phosphorylation. Interruption of 
blood flow to the myocardium disrupts oxygen supply, trig-
gering rapid declines in ATP and increased AMP/ATP ratios. 
Brief episodes of transient myocardial ischemia are tolerated 
by myocytes. Experimental studies performed in canine 
heart, show that coronary occlusions of up to 15 minutes 
result in reversible injury, and beyond that, irreversible in-
jury [28, 29]. In humans, irreversible ischemic damage of the 
myocardium begins after 20 minutes of total ischemia [30], 
starting from subendocardium and progressing into the 
subepicardium of the ischemic myocardial bed-at-risk, such 
that the wavefront of irreversible injury is completed after 3 
to 4 h or less [15, 31-34].  
 The metabolic changes associated with the sudden onset 
of ischemia caused by occlusion of a major coronary artery 
include (a) cessation of aerobic metabolism, (b) depletion of 
creatine phosphate (CP), (c) onset of anaerobic glycolysis, 
and (d) accumulation of glycolytic products, such as lactate 
and alpha glycerol phosphate (alpha GP), and catabolites of 
the nucleotide pools in the tissue [7, 14, 35, 36]. Restoration 
of the blood flow can, paradoxically, trigger several 
physiopathological events that can exacerbate tissue injury 
and reduce the beneficial effects of reperfusion, leading to 
cell death of critically injured cardiomyocytes (lethal reper-
fusion injury) [37-47].  
 The evolving process of myocardial ischemic injury is a 
highly orchestrated process in which several important mor-
phofunctional events occur that consequently lead to the re-
moval of the injured tissue and the establishment of a scar 
[48-58].  

Cell Death 
 The loss of the cardiomyocites constitutes the first event 
and it represents a signal for a cascade of pathophysiological 
events; in experimental models of MI a large burst of cell 
death takes place within the ischemic area over the first 6 to 
24 hours [59]. Cardiomyocytes’ death occurs via necrosis 
and via apoptosis [60, 61]. Although MI was long considered 
to be characterized by nonapoptotic (“necrotic”) cell death 
due to the breakdown of cellular energy metabolism, since 
Gottlieb documented reperfusion-induced apoptosis in rabbit 
cardiomyocytes [62] there has been growing evidence that 
hypoxia activates the suicide program of cardiac myocytes  
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in vitro [63] and in vivo [64] and that myocyte loss during 
the acute stage of myocardial MI involves both apoptotic and 
nonapoptotic cell death [65-73]. However, the conclusions 
drawn by all the studies on this matter seem quite contradic-
tory.  
 Experimental studies performed on rats showed a signifi-
cantly greater number of cardiomyocytes undergoing apop-
tosis than necrosis and that apoptotic myocyte cell death 
preceded cell necrosis and is the major determinant of infarct 
size [59, 74, 75]. These Authors concluded that programmed 
myocyte cell death is the prevailing form of myocardial 
damage, whereas necrotic myocyte cell death follows apop-
tosis and contributes minimally to the progressive loss of 
myocytes after infarction. Apoptosis was reported to be the 
major form of cardiomyocyte death up to 6 h after coronary 
occlusion in rats [59]. Conversely, other Authors [62, 76, 77] 
hypothesized that apoptotic cell death is initiated by ische-
mia but that reperfusion is needed for completion of the 
apoptotic cascade. Studies performed on adult rat cardio-
myocyte culture [65, 78] suggested that apoptosis is a pre-
dominant mode of cell death during reoxygenation, but non-
apoptotic cell death predominates during prolonged hypoxia 
alone. Reoxygenation, although associated with both apop-
totic and nonapoptotic cell deaths, induced significantly 
greater apoptosis than hypoxia alone, despite the fact that 
hypoxia alone induced more overall cell death. Other studies 
[79, 80] reported apoptosis to contribute 5% to 33% of car-
diomyocyte loss in various animal models of myocardial 
ischemia and reperfusion.  
 In humans, DNA fragmentation was detected in cardio-
myocytes from hearts autopsied following fatal MI [66] and 
subsequently many Authors investigated the models of car-
diac myocytes’ death in human infarction [68, 81]. However, 
the differential contribution of necrosis and apoptosis in 
myocardial ischemia/reperfusion injury is still unclear and 
there is controversy whether the biologic form of cell death 
is “apoptotic” or “nonapoptotic” [43, 45, 82-104]. It has been 
strongly underlined that the simple use of TUNEL-positivity 
and DNA ladder detection for determination of apoptosis can 
result in misunderstandings as to the mode of cell death [100, 
105-111]. Takemura et al. using electron microscopy to as-
sess apoptotic morphology, particularly preservation of 
membrane integrity, found no cardiomyocytes exhibiting 
apoptotic ultrastructure in infarcted areas, thus concluding 
that although some final steps in the apoptotic process may 
be activated in infarcted tissue, this activation likely has no 
relevance to the extent of infarction already determined by 
irreversibly oncotic cardiomyocytes [112]. Other Authors 
reported similar results and light and electron microscopic 
evidence of typical apoptotic morphology in cardiomyocytes 
in in vivo models of myocardial ischemia has been scant 
[113, 114]. Studies by Nakagawa et al. [115] supported  
the doubt of cardiomyocyte apoptosis during ischemia/ 
reperfusion. Recently Konstantinidis et al. [83] investigated 
the mechanisms of cell death in MI and underlined that 
apoptosis and necrosis are mediated by distinct, but highly 
overlapping central pathways; the extrinsic pathway (death 
receptors DRs) and the intrinsic (mithocondrial/endoplasmic 
reticulum ER) one, in fact, appear to be linked by multiple 
biochemical and functional connections. Some death ligands 
may induce apoptosis or necrosis depending on the down-

stream events; mithocondria and ER activation are central to 
both apoptotic and necrotic process. The Authors concluded 
that both apoptosis and necrosis are involved in MI [83]. 
Other Authors had previously postulated such an hybrid 
ischemic injury model in which both apoptotic and oncotic 
mechanistic pathways can be activated in the same cardio-
myocytes [43, 99]. 
 The issue of the mode of death of ischemic cardiomyo-
cytes is even more complex if one considers that dead cells 
are so severely degraded by the final stage that it cannot be 
morphologically determined whether they died via apoptosis 
or necrosis, and that necrosis refers only to an irreversible 
stage of cell death, even though dying cells generally pro-
gress from a reversible to an irreversible stage [112]. Due to 
these observations, Majno and Joris [116] revived the term 
“oncosis” to identify cell death accompanied by swelling and 
substituted oncosis for necrosis in cells dying via a process 
involving cellular swelling. In conclusion, contrasted to 
apoptosis which is a programmed form of cell death, many 
Authors prefer the term “oncosis” to identify a model of cell 
death as passive response to external noxae, including 
ischemia while necrosis is the final irreversible phase of cel-
lular death in which advanced cellular degeneration is seen 
regardless of the mode of death [112]. In their review Buja et
al. [99] identified the oncotic process as evolving from a 
reversible phase, involving mild alterations in ionic transport 
systems, to an irreversible stage with physical disruption of 
the cell membrane. These stages of oncotic membrane injury 
are accompanied by progressive morphologic changes of 
organellar and cell swelling, membrane blebbing, and mem-
brane and cell rupture with leakage of intracellular constitu-
ents that provokes the response of exudative inflammation 
[117]. On the other hand, key morphological features of 
apoptotic death are represented by shrinkage of the nucleus 
with condensation and fragmentation of the chromatin 
(pyknosis) followed by fragmentation of the nucleus (kary-
orhexis) and cytoplasm into apoptotic bodies which are rap-
idly phagocytosed by macrophages or occasionally by adja-
cent cells. When this process is efficient, inflammation is 
avoided [118] (Fig. 1). 
 Finally, it is noteworthy that the mechanisms involved in 
cellular death are multifaceted and complex, since reperfu-
sion injury can be responsible for a significant proportion 
(one-third or more) of cell death (either necrosis or apopto-
sis) [38]. Reperfusion induces abrupt biochemical and meta-
bolic derangements in cardiomyocytes already perturbed by 
the effects of acute ischemia. Mitochondrial reenergization, 
the generation of reactive oxygen species (oxygen paradox), 
intracellular calcium overload (calcium paradox), and the 
rapid restoration of physiological pH (pH paradox), collapse 
of ATP production, loss of mythocondrial integrity subse-
quent to opening of the mitochondrial membrane PTP, and 
sarcolemmal disruption are thought to be deleterious effect 
of reperfusion [20, 21, 44, 119]. 

Histological and Immunohistochemical Findings in Early 
Infarction 

 From a morphological point of view, different findings 
have been described in the early phase of MI. The earliest 
histological signs are visible within 30 min of infarct onset 
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and consist of mild myofiber eosinophilia and elongation of 
sarcomeres and nuclei. Functionally the loss of contraction 
of a myocardial region is the first change following MI 
(atonic death). Swelling of the entire cytoplasm and changes 
of the mitochondria with swelling and dissolution of the cris-
tae mitochondriales have been detected by electron micros-
copy up to 30 minutes from MI [120] with subsequent cellu-
lar membrane blebbing and complete cell rupture. In the 
myocardial interstitium, after 20–24 minutes from MI, in-
creased vascular permeability adds to the increased intercel-
lular oncotic pressure; interstitial edema becomes evident 
after 8 h [121].  
 One of the earliest (within minutes) histological sign ob-
served in the infarcted area is prominent CBN [122-124]. 
When myocardial ischemia is brief enough to cause the death 
of only a part of the myocytes within the myocardium at risk 
(severely ischemic), cell death occurs almost exclusively 
during the first minutes of reperfusion in the form of CBN. 
Strikingly, hypercontracted, dead cardiomyocytes are not 
scattered across reperfused myocardium, but are invariably 
connected to other dead myocytes within well-delimited ar-
eas of contraction band necrosis, often with irregular geome-
try [125]. This pattern cannot be explained as a consequence 
of microvascular or collateral distribution or other structural 
patterns, and computer simulation studies indicated that it is 
due to some kind of cell-to-cell interaction [126, 127]. Tradi-
tionally interpreted as an ischemic myocardial lesion, this 
phenomenon has been ascribed to a rapid re-energisation of 
myocytes with calcium overload and may be related to 
adrenergic stress [122, 128]. Reperfused myocardium is of-

ten reddish and hemorrhagic due to microvascolature dam-
age which is documented to occur later than cardiomyocytes 
injury (45-60 min) [123, 129-133].  
 The usefulness of immunohistochemical markers for the 
diagnosis of early ischemic myocardial damage has been 
suggested many years ago because most of them can be de-
tectable as early as few minutes after the beginning of the 
myocardial injury, even before myocardial ischemia is visi-
ble macroscopically or histologically. Immunohistochemistry 
is an appropriate procedure to evaluate cell recruitment and 
humoral network in myocardial response to ischemic insult. 
Cellular and plasma markers have, traditionally, been se-
lected on the basis of their different diagnostic potential in 
early ischemic myocardial injury (C5b-9 complex, C9, fi-
bronectin and fibrinogen, myoglobin, cardiac troponin C and 
cardiac troponin T, desmin) [134-141]. Plasma markers 
(C5b-9 complex, fibronectin) tend to accumulate in necrotic 
cardiac cells and interstitium and stain positive in ischemic 
areas while cellular markers (such as myoglobin and cardiac 
troponin) show an early depletion from ischemic areas and, 
usually, appear in very high serum concentration [139]. Gen-
erally, the loss of cellular antigen (negative markers of ne-
crosis) is detectable earlier than the accumulation of the cel-
lular antigens (positive markers of necrosis) [136]. C5b-9 
complement complex was considered a specific marker for 
necrosis which allowed detection of a single – cell damage 
and whose specificity was not reduced due to putrefaction 
[141]. The detection of the complement complex C5b-9 be-
comes positive within 30 – 40 minutes from myocardial 
ischemia [141]; however the study by Ortmann et al. [136] 

Fig. (1). models of cellular death (modified from Buja LM, Eigenbrodt ML, Eigenbrodt EH. Apoptosis and necrosis. Basic types and mecha-
nisms of cell death. Arch Pathol Lab Med 1993; 117(12): 1208-14).  
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showed that fibrinogen and fibronectin start to become posi-
tive later that the cellular antigens but earlier than C5b-9 
[136,139]. Products of complement activation in MI (e.g.
C4d, C9) have been investigated in fatal human cases of MI 
[142] resulting an immunoreactive response for C4d and C9, 
with clear delineation between necrotic and viable myocytes, 
in all the infarctions with evidence of cellular injury but 
without a polymorphonuclear infiltrate. 

Ongoing Phases of Infarct Healing 

 MI triggers a reparative response in which overlapping 
phases are detectable (Fig. 2).  
 Following to cell disintegration an intense inflammatory 
response by activating innate immune mechanisms is elicited 
[48, 143]. A great mass of studies have demonstrated the role 
of humoral (cytokines and inducible chemokines, comple-
ment, and toll – like receptors) and cellular (monocytes, 
macrophages, dendritic cells, T cells, mast cells, platelets, 
endothelial cells) mediators in the initial healing phases fol-
lowing cardiomyocytes’ death [48, 143-152].  

 Neutrophils accumulate in the infarcted myocardium in 
the first hours after onset of ischemia, and peak after one 
day; thereafter, monocytes and their lineage descendant 
macrophages dominate the cellular infiltrate [153]. In this 
phase an up – regulation of several cytokines (e.g., Interleu-
kin 1�, Interleukin 18, Interleukin 6, Tumor Necrosis Factor 
�, etc.), chemokines (e.g. Interleukin 8, MCP-1/CCL2), and 
adhesion molecules (e.g. ICAM 1, E selectin) occurs [152, 
154, 155]. The inflammatory cells release proteolytic en-
zymes and reactive oxygen species (ROS) that harm myo-
cytes that survived the ischemic period. The first peripheral 

leucocyte reaction (4-7 h) gradually evolves to a strong evi-
dence (9 h) with further leucocyte penetration of the infarct 
area (18-24 h). The penetration of leucocytes continues for 
5-6 days and then inflammatory cells disappear within weeks 
from infarct [120] as expression of pro-inflammatory media-
tors’ suppression [143]. Other authors hypothesized that dis-
appearance of inflammatory cells is due to their programmed 
death [50]. Cardiac mast cells rapidly degranulate after MI 
and release a wide variety of mediators with pleiotropic ac-
tions: histamine that induces surface expression of P-selectin 
in endothelial cells and facilitates the recruitment of rolling 
leukocytes; tryptase that incites granulocyte recruitment and 
upregulates cytokine and chemokine synthesis, TNF-� that 
interferes in the cytokine cascade [48].  
 At the periphery of the necrotic myocardium, a repair 
process starts by neutrophilic and macrophagic digestion of 
tissue. The trigger for the proliferative phase is represented 
by the release of anti – inflammatory citokynes (such as In-
terleukin 10 and growth factors, such as Transforming 
Growth Factor � (TGF – �) (so called stop signals) leading to 
the formation of highly vascularized granulation tissue; at 
this phase of the healing process expression of pro – inflam-
matory mediators ceases and fibroblast – like cells and endo-
thelial cells proliferate. A vascular network begins to form at 
the infarct site on day 3 postMI that nourishes myofibro-
blasts (MyoFb) and provides for their metabolic activity [50, 
154, 156, 157].  
 At the same time fibroblasts are stimulated to differenti-
ate in MyoFb [158]; in addition to resident fibroblasts other 
sources of MyoFb are invoked: i) epithelial and endothelial 
cells can adopt a myofibroblast phenotype through a transi-

          hours         day    weeks            months 

Fig. (2). ongoing phases of myocardial infarct. 
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tion process (endothelial – mesenchymal transition and 
epithelial – mesenchymal transition); ii) fibroblast – like 
cells are thought to be derived from bone – marrow stem 
cells (fibrocytes); iii) MyoFb can originate from pericytes, 
extensively branched cells located in capillaries and small 
blood vessels that can dissociate from the walls of the ves-
sels, migrate and differentiate into the myofibroblast pheno-
type [60, 159, 160]. These cells play a major role in scar 
formation; they are found at the infarct site soon after the 
arrival of inflammatory cells and they are responsible for the 
production and deposition of collagen and other proteins of 
the extracellular space [60, 161-165]. A strict cross – talk 
between cardiac myocites and myofibroblasts is critical in 
the response to ischemic injury [166, 167].  

 As some Authors have underlined besides the pivotal 
mechanical role of cardiac extracellular matrix (ECM), ma-
trix components have a dynamic role in regulation of in-
flammatory and fibrotic signals in the infarcted area [168]. 
During the inflammatory phase of infarct healing an early 
disruption of collagen matrix is present [169, 170] due to the 
enhancement of Matrix Metalloproteinases (MMPs) expres-
sion by proinflammatory mediators such as TNF – � and IL - 
1� [171, 172]. MMPs are an endogenous family of enzymes 
that have been identified to be responsible for collagen ma-
trix remodeling in a number of physiological processes. Ex-
perimental studies performed on pigs demonstrated that an 
early onset of MMP activation occurred within the inter-
stitium of the MI region and that, with longer periods post 
MI, this occurred also in the remote regions of MI [173]. 
Generation of matrix fragments activates a cascade of events 
such as neutrophil, monocyte and fibroblast chemotaxis. The 
matrix alterations during the proliferative phase of healing 
provide essential signals for MyoFb activation, matrix orga-
nization, and repression of the inflammatory reaction [168]. 
In the maturation phase of infarct healing, the strict cross –
talk between matrix and MyoFb persists: “stress – shielding” 
of the myofibroblasts by the cross – linked matrix and 
growth factor withdrawal may induce quiescence and ulti-
mately cause apoptotic death [164, 168, 174]. 

Histological and Immunohistochemical Findings in Heal-
ing Infarct 

Inflammatory Phase  

 Typical early changes detectable in the inflammatory 
phase occur approximately 6 to 8 hours after an infarct in 
human hearts with a margination of circulating inflammatory 
cells, polymorphonuclear (PMN) leukocytes that include 
neutrophils and monocytes/macrophages, in vessels at the 
periphery of the necrotic zone followed by an infiltration of 
these elements, without fibrin or haemorrhage, into the 
ischemic issue. A crowd of PMN is visible along a line be-
tween infiltrated and noninfiltrated necrotic myocardium in 
large areas of necrosis. 

 Before the influx of the inflammatory cells becomes his-
tologically detectable, the presence and the nature of the im-
muno-inflammatory and cellular phenomena accompanying 
the cardiac alterations during inflammatory phase of MI can 
be evaluated by immunohistochemistry. Immunohistochemi-
cal analyses on experimental MI in mice have been performed 
[175], aimed to distinguish the different clusters of cellular 
population T and the appearance of the humoral factors in the 
infarcted regions. To the best of our knowledge studies focus-
ing on the application of immunohistochemistry in assessing 
the timing of human infarcts are unavailable in the literature. 
The current knowledge about the chronology of the responses 
of myocardial tissue following the occurrence of an 
ischemic/reperfusion insult, as well as our previous experience 
both in in vivo animal models [176] and in human diseases 
[177] using immunohistochemistry and immunoblot analysis 
to detect the expression of inflammatory cytokines, induced us 
to apply these techniques on cardiac tissue specimens of fatal 
MI. We investigated samples of cardiac tissue obtained during 
post-mortem examinations of subjects died from MI, using a 
panel of antibody (CD15, IL-1�, IL-6, TNF-�, IL-15, IL-8, 
MPC-1, ICAM-1, CD18, anti - tryptase) (Table 1). Our pre-
liminary unpublished results (semi-quantitative analysis) dem-
onstrated a mild positivity of CD15, tryptase, IL-1 �, IL-6, 
TNF-�, IL-8, MPC-1, and tryptase reaction in the infarcted 

Table 1. Semi-quantitative evaluation of the timing related immunohistochemical findings. 

Antibody Very early infarction 
(0-6 hours) 

Early infarction 
(6-12 hours) 

Tryptase +/++ +++ 

TNF-� +/++ +++ 

CD15 +/++ +++ 

IL-1� ++ +++ 

IL-6 ++ +++ 

IL-8 ++ +++ 

IL-15 +++ +++ 

MPC-1 ++ + 

ICAM + ++ 

(-): not expressed; (+): isolated and disseminated expression; (++): expression in groups or widespread foci; (+++): widespread expression.
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zone matched by the immunodepletion of negative markers of 
necrosis (such cellular antigen troponin) and in the absence of 
histological signs of cellular margination (approximately 4-6 
hours from ischemia). In older infarction (8-12 h) a progres-
sively stronger immunoreactions for the same antibodies was 
visible in areas where the margination of circulating inflamma-
tory cells became histologically detectable up to a very strong 
expression in the oldest ones (> 12 hours) (Figs. 3, 4 and 5).  
 Although further studies are needed, these preliminary 
results led us to consider the immunohistochemical study of 
human infarctions’ tissue as a matter of paramount utility in 

detecting very early infarction, thus integrating the tradi-
tional microscopic examination of the heart and allowing 
research on MI timing to advance significantly.  

Proliferative Phase 

 Starting from 2-3- weeks from MI pronounced peripheral 
granulation tissue with sprouted capillary blood vessels, fi-
brocytes, fibroblasts, lymphocytes, few plasma cells, macro-
phages, possibly siderophages, and few granulocytes become 
increasingly apparent. The granulation tissue phase can ex-
tend for approximately 1-2 months in humans [61]. From 5 

Fig. (3). Immunohistochemical detection of the time course of the IL-15: IL-15 at 1 hr (A-B), after 3 hrs (C), and 6 hrs (D). Reactions may be 
interpreted as the adaptive response of jeopardized myocardium with respect to the cardiac dysfunction resulting from myocardial infarction. 

Fig. (4). Immunohistochemical detection of the time course of the cardioinhibitory cytokines: (A) IL-1�, (B) IL-6, (C) IL-8 during the very 
early phase of MI. MCP-1 expression: 4 hrs after MI (D).
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weeks to 2-3 months collagen fiber or scar tissue with endo-
thelially coated blood vessels of varying density, sidero-
phages still possible, loose infiltration with lymphocytes, 
few plasma cells, scant granulocytes are the histological 
findings observed [120]. Maturation of the granulation tissue 
follows and MyoFb number starts decreasing after the 7 th 
day post reperfusion even if it is demonstrated that they may 
persist in the healed area up to 20 years after MI [178]. This 
suggest that MyoFb play an important role in maintaining the 
stability of the scarred area by continuing the production of 
type I and type III fibrillar collagen long after scar tissue 
have replaced the necrotic tissue. Well – healed infarcts con-
tain large amounts of ECM, which can occupy up to 90% of 
the healed area [61].  
 Up to 3-6 months scar tissue with fewer cells, few capil-
lary blood vessels, scant siderophages are the predominant 
histological findings [120].  
 Recently, Tatìc et al. [179], investigated the histological, 
histochemical and immunohistochemical findings in cardiac 
samples taken from 177 patients who had died of acute myo-
cardial MI. Interestingly, in the scar, a large number of cells 
of various size and form (spindle, oval, elongated with abun-
dant cytoplasm, small with one nucleus and cells with scanty 
cytoplasm) were found. Histochemical and immunohisto-
chemical analyses revealed that large oval cells showed 
negative reaction to lymphocytic and leukocytic markers, 
and positive to alpha actin, actin HHF35, Ki-67, myosin, 
myoglobin and desmin. Elongated cells were also positive to 
those markers. Small mononuclear cells showed positive 
reaction to lymphocytic markers. Endothelial and smooth 
muscle cells in the blood vessel walls were positive to CD34 
and CD31, and smooth muscle cells to actin. Oval and elon-
gated cells were positive to Proliferating cell nuclear antigen 
(PCNA) and Ki-67. The preserved muscle fibers in the scar 
were positive to myosin, myoglobin and desmin as well as 

elongated and oval cells. The Authors’ conclusions that the 
myocardium is not a static organ without capacity of cell 
regeneration are in line with the affirmation that infarct scar 
is now recognized as living tissue: composed of a persistent 
population of fibroblast-like cells whose ongoing activity 
includes a regulation of collagen turnover and scar tissue 
contraction and which are nourished by a neovasculature 
[50].  

Ventricular Remodeling  

 Over the years, it has become increasingly appreciated 
that myocardial infarcts, particularly large transmural in-
farcts, may result in complex alterations in ventricular archi-
tecture involving both the infarcted and noninfarcted zones 
(ventricular remodeling) and that long-term outcome of in-
farcted patients largely depends on the extent of post-infarct 
remodeling [180, 181]. Adverse ventricular remodeling after 
MI is responsible for most of heart failure cases. Post - in-
farct remodeling is a dynamic process that involves a consid-
erable number of biomolecular events, such as cell death and 
survival, oxidative and mechanical stress, hemodynamic 
change, inflammatory reaction, neuroendocrine activation, 
changes in the extracellular matrix, and fibrosis [56, 152, 
182-185]. An optimal balance between the formation of an 
early mature scar and an excessive fibrotic response is of 
paramount importance for the preservation of ventricular 
geometry and function post MI [186]. A pathophysiological 
underpinning of the LV remodeling process is that continu-
ous changes occur in the structure and function of the fully 
perfused myocardium surrounding the infarct region, de-
scribed as the borderzone myocardium. Extension of these 
changes from the borderzone to contiguous normal myocar-
dium is a process defined as infarct expansion towards the 
epicardium during the first few hours after reperfusion. The 
infarct border zone, which is located between the infarct and 

Fig. (5). (A) mast-cells reaction after 8 hrs (red circles). TNF-� expression after 6-8 hrs (B). CD15 after 6 hrs (C) and 12 hrs (D).  
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remote zones, represents a cornerstone in limiting the infarct 
expansion [187, 188]. The mechanical shear stress imposed 
on cardiomyocytes lining the infarct scar induce oxidative 
stress and activate pro-inflammatory pathways within these 
cells. Expression of both TNF-alpha [189] and iNOS protein 
[188] have been documented in cardiomyocytes bordering 
the infarct scar [186]. Recently, for the first time a proteomic 
analysis specifically using myocardial tissue from the border 
zone during the early stage of post-infarct remodeling has 
been performed to test the hypothesis that functional proteins 
could be differentially expressed and might play significant 
roles in regulating the dynamic process of ventricular re-
modeling [190]. A differential myocardial proteome profile 
was identified in the border zone during early stage post-
infarct remodeling.  

CONCLUSION 

 The chronologic dating of MI is of great importance 
both to clinical and forensic investigation, that is, the abil-
ity to create a theoretical timeline upon which either clini-
cians or forensic pathologists may increase their ability to 
estimate the time of MI. Traditional dating of MI, based on 
histological findings such as cellular margination, is not so 
useful for clinical and forensic purposes because very early 
infarction cannot be distinguished with any degree of cer-
tainty. The application of selective immunohistochemical 
techniques can open up a new field of investigation in the 

issue of determining myocardial infarct age. Besides rou-
tine histological techniques, the immunohistochemical in-
vestigation of many bioactive substances essentially in-
volved in the response to myocardial ischemia, may give a 
substantial contribution to myocardial infarct’s age estima-
tion (Table 2). 
 Aging of MI has very important practical implications in 
clinical practice since, based on the chronological dating of 
MI, attractive alternative to solve therapeutic strategies in the 
various phases of MI are developing. The target of early 
management of acute MI is reperfusion therapy which can 
alter the course of infarction, limit the extent of myocardial 
damage, and improve subsequent prognosis. The efficacy of 
reperfusion therapies is decreased with the prolongation of 
the time interval between the onset of symptoms and treat-
ment [191]. Knowledge on the pathophisyological mecha-
nisms underlying to the evolving process of MI presents a 
unique therapeutic challenge to clinicians.  
 An ever-growing volume of studies over the past 30 
years speaks to the recent and rapid growth in targeting the 
immune response following MI in order to optimize cardiac 
repair [48]. Cardiac stem cell therapy to modulate inflamma-
tion upon MI may represent a promising approach in cardio-
vascular medicine [192-195] and tissue engineering has 
emerged as an alternative cell-based approach, aiming at 
partial or full replacement of damaged organs with in vitro
generated tissue equivalents [8, 196-199]. 

Table 2. Histological/immunohistochemical age determination of MI and cardiac repair (modified from Dettmeyer RB. Myocar-
dial Infarction. In: Dettmeyer RB, Ed. Forensic Histopathology. Springer-Verlag: Berlin Heidelberg, 2011; pp. 245. 

Cell death  Up to 30 minutes – 
1 hour 

Cytoplasm and mitochondrial swelling and dissolution of the cristae mitochondriales (electron microscopy); 
loss of contraction with stretching of the myocardium in flaccid paralysis, resulting in a very early elongation 
of sarcomeres and nuclei; mild myofiber eosinophilia. Contraction band necrosis. At immunohistochemistry 
loss of cellular antigen (myoglobin and cardiac troponin) is detectable earlier than the accumulation of plasma 
markers (C5b-9 complex, fibronectin).  

Inflammatory  

phase  

4-6 hours  

6-8 hours  

8-12 hours  

18-24 hours  

Mild positivity of immunoreaction (tryptase, CD15, IL 1-�, IL – 6, IL -8, IL – 15, TNF –�, MPC – 1) in areas 
where depletion of cellular antigens (myoglobin and cardiac troponin) is detectable within 30 – 40 minutes 
from ischemia.  

Necrosis of the infarcted area becomes more evident; a crowd of polymorphonuclear leucocyte infiltration 
from the periphery is evident. General and intense eosinophilia of myofibers. Interstitial oedema. Im-
munopositivity to the antibodies anti tryptase, CD15, IL 1-�, IL – 6, IL -8, IL – 15, TNF –�, MPC – 1 be-
comes stronger and ubiquitously widespread.  

Pronounced necrosis of the infarcted areas; strong evidence of PMN margination with further leucocyte pene-
tration of the infarct area. Strong immunopositivity to the above mentioned antibodies. 

Pronounced necrosis, further leucocyte penetration of the infarcted area. 

Proliferative and 
maturation  

phases  

5-7 days  

2-3 weeks  

5 weeks- 2/3 months 

3-6 months  

6-12 months  

Inflammation cells disappear; fibroblast – like cells and endothelial cells proliferate. Initial formation of pe-
ripheral granulation tissue. Immunopositivity to the antibodies anti-IL10.  

More pronounced peripheral highly vascularized granulation tissue with sprouted capillary vessels, fibro-
blasts, lymphocytes, few plasma cells. Macrophages, possibly siderophages, few granulocytes.  

Collagen scar with endothelially coated capillary blood vessels, siderophages still possible, loose infiltration 
with lymphocytes, few plasma cells, scant granulocytes.  

Scar tissue with fewer cells, few capillary blood vessels, scant siderophages. 

Fibroblasts and vascular cells progressively disappear and a prominent collagen-based scar is present.  
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 In the very near future, proteomics may help clinicians 
and pathologist to better understand mechanisms related to 
cardiac repair and remodeling and provide targets for future 
therapies [200-203]. In addition, these technologies might be 
used as a tool for optimizing individual treatment programs 
[204].  
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