75 research outputs found

    The energy dependence of flow in Ni induced collisions from 400 to 1970A MeV

    Get PDF
    We study the energy dependence of collective (hydrodynamic-like) nuclear matter flow in 400-1970 A MeV Ni+Au and 1000-1970 A MeV Ni+Cu reactions. The flow increases with energy, reaches a maximum, and then gradually decreases at higher energies. A way of comparing the energy dependence of flow values for different projectile-target mass combinations is introduced, which demonstrates a common scaling behaviour among flow values from different systems.Comment: 12 pages, 3 figures. Submitted to Physical Review Letter

    Event Anisotropy in High Energy Nucleus-Nucleus Collisions

    Full text link
    The predictions of event anisotropy parameters from transport model RQMD are compared with the recent experimental measurements for 158AA GeV Pb+Pb collisions. Using the same model, we study the time evolution of event anisotropy at 2AA GeV and 158AA GeV for several colliding systems. For the first time, both momentum and configuration space information are studied using the Fourier analysis of the azimuthal angular distribution. We find that, in the model, the initial geometry of the collision plays a dominant role in determining the anisotropy parameters.Comment: 18 pages, 7 figures, 2 table

    Flow angle from intermediate mass fragment measurements

    Full text link
    Directed sideward flow of light charged particles and intermediate mass fragments was measured in different symmetric reactions at bombarding energies from 90 to 800 AMeV. The flow parameter is found to increase with the charge of the detected fragment up to Z = 3-4 and then turns into saturation for heavier fragments. Guided by simple simulations of an anisotropic expanding thermal source, we show that the value at saturation can provide a good estimate of the flow angle, Θflow\Theta_{flow}, in the participant region. It is found that Θflow\Theta_{flow} depends strongly on the impact parameter. The excitation function of Θflow\Theta_{flow} reveals striking deviations from the ideal hydrodynamical scaling. The data exhibit a steep rise of \Theta_{\flow} to a maximum at around 250-400 AMeV, followed by a moderate decrease as the bombarding energy increases further.Comment: 28 pages Revtex, 6 figures (ps files), to appear in Nucl.Phys.

    Statistical signatures of critical behavior in small systems

    Get PDF
    The cluster distributions of different systems are examined to search for signatures of a continuous phase transition. In a system known to possess such a phase transition, both sensitive and insensitive signatures are present; while in systems known not to possess such a phase transition, only insensitive signatures are present. It is shown that nuclear multifragmentation results in cluster distributions belonging to the former category, suggesting that the fragments are the result of a continuous phase transition.Comment: 31 pages, two columns with 30 figure

    Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV

    Get PDF
    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear ``bounce-off'' event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields --particularly at low ptp_t at midrapidities-- and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.Comment: 38 pages, 9 figures, LaTeX type, eps used, subm. to Phys. Rev.

    Radial Flow in Au+Au Collisions at E=0.25-1.15 A GeV

    Get PDF
    A systematic study of energy spectra for light particles emitted at midrapidity from Au+Au collisions at E=0.25-1.15 A GeV reveals a significant non-thermal component consistent with a collective radial flow. This component is evaluated as a function of bombarding energy and event centrality. Comparisons to Quantum Molecular Dynamics (QMD) and Boltzmann-Uehling-Uhlenbeck (BUU) models are made for different equations of state.Comment: 10 pages of text and 4 figures (all ps files in a uuencoded package)

    Differential directed flow in Au+Au collisions

    Full text link
    We present experimental data on directed flow in semi-central Au+Au collisions at incident energies from 90 to 400 A MeV. For the first time for this energy domain, the data are presented in a transverse momentum differential way. We study the first order Fourier coefficient v1 for different particle species and establish a gradual change of its patterns as a function of incident energy and for different regions in rapidity.Comment: 5 pages, Latex, 5 eps figures, accepted for publication in Phys. Rev. C (Rapid Communications). Data files available at http://www-linux.gsi.de/~andronic/fopi/v1.htm

    Directed flow in Au+Au, Xe+CsI and Ni+Ni collisions and the nuclear equation of state

    Full text link
    We present new experimental data on directed flow in collisions of Au+Au, Xe+CsI and Ni+Ni at incident energies from 90 to 400A MeV. We study the centrality and system dependence of integral and differential directed flow for particles selected according to charge. All the features of the experimental data are compared with Isospin Quantum Molecular Dynamics (IQMD) model calculations in an attempt to extract information about the nuclear matter equation of state (EoS). We show that the combination of rapidity and transverse momentum analysis of directed flow allow to disentangle various parametrizations in the model. At 400A MeV, a soft EoS with momentum dependent interactions is best suited to explain the experimental data in Au+Au and Xe+CsI, but in case of Ni+Ni the model underpredicts flow for any EoS. At 90A MeV incident beam energy, none of the IQMD parametrizations studied here is able to consistently explain the experimental data.Comment: RevTeX, 20 pages, 30 eps figures, accepted for publication in Phys. Rev. C. Data files available at http://www.gsi.de/~fopiwww/pub
    corecore