763 research outputs found

    Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    Full text link
    In the exotic atoms where one atomic 1s1s electron is replaced by a KK^{-}, the strong interaction between the KK^{-} and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the 1s1s state of KpK^{-}p and the 2p2p state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.Comment: 4 pages, 1 figure, proceedings for oral presentation at the ICNFP2015 conference, Kolymbari, Cret

    Precision measurement of the ηπ+ππ0\eta\to\pi^+\pi^-\pi^0 Dalitz plot distribution with the KLOE detector

    Full text link
    Using 1.61.6 fb1^{-1} of e+eϕηγe^+ e^-\to\phi\to\eta\gamma data collected with the KLOE detector at DAΦ\PhiNE, the Dalitz plot distribution for the ηπ+ππ0\eta \to \pi^+ \pi^- \pi^0 decay is studied with the world's largest sample of 4.7106\sim 4.7 \cdot 10^6 events. The Dalitz plot density is parametrized as a polynomial expansion up to cubic terms in the normalized dimensionless variables XX and YY. The experiment is sensitive to all charge conjugation conserving terms of the expansion, including a gX2YgX^2Y term. The statistical uncertainty of all parameters is improved by a factor two with respect to earlier measurements.Comment: 11 pages, 9 figures, supplement: an ascii tabl

    Low-energy kaon-nucleon/nuclei interaction studies at DAΦNE by AMADEUS

    Get PDF
    The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DAΦNE collider at LNF-INFN, fundamental to respond to longstanding open questions in the non-perturbative QCD in the strangeness sector. One of the most interesting aspects is to understand how hadron masses and interactions change in the nuclear environment. The antikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would imply a strongly attractive antikaon-nucleon potential. AMADEUS step 0 consists in the analysis of 2004/2005 KLOE data, exploring K− absorptions in H, 4He, 9Be and 12C present in setup materials. The status of the various preliminary analyses is presented, together with future perspectives

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Measurement of the energy response of the ATLAS calorimeter to charged pions from W±→ τ±(→ π±ντ) ντ events in Run 2 data

    Get PDF
    The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range 10 < pT< 300 GeV. The measurement is performed using 139 fb - 1 of LHC proton–proton collision data at s=13 TeV taken in Run 2 by the ATLAS detector. Charged pions originating from τ-lepton decays are used to provide a sample of high-pT isolated particles, where the composition is known, to test an energy regime that has not previously been probed by in situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by ∼ 2 % across a large part of the pT spectrum in the central region and underestimated by ∼ 4 % in the endcaps in the ATLAS simulation. The uncertainties in the measurements are ≲ 1 % for 15 < pT< 185 GeV in the central region. To investigate the source of the discrepancies, the width of the distribution of the ratio of calorimeter energy to track momentum, the energies per layer and response in the hadronic calorimeter are also compared between data and simulation

    Measurement of the energy asymmetry in tt¯ j production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework

    Get PDF
    A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139fb-1 of data collected by the ATLAS detector at the Large Hadron Collider during pp collisions at s=13TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic tt¯ decay channel, and the hadronically decaying top quark must have transverse momentum above 350GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be - 0.043 ± 0.020 , in agreement with the SM prediction of - 0.037 ± 0.003. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits

    Model-independent search for the presence of new physics in events including H → γγ with s \sqrt{s} = 13 TeV pp data recorded by the ATLAS detector at the LHC

    Get PDF
    Abstract A model-independent search for new physics leading to final states containing a Higgs boson, with a mass of 125.09 GeV, decaying to a pair of photons is performed with 139 fb−1 of s s \sqrt{s} = 13 TeV pp collision data recorded by the ATLAS detector at the Large Hadron Collider at CERN. This search examines 22 final states categorized by the objects that are produced in association with the Higgs boson. These objects include isolated electrons or muons, hadronically decaying τ-leptons, additional photons, missing transverse momentum, and hadronic jets, as well as jets that are tagged as containing a b-hadron. No significant excesses above Standard Model expectations are observed and limits on the production cross section at 95% confidence level are set. Detector efficiencies are reported for all 22 signal regions, which can be used to convert detector-level cross-section limits reported in this paper to particle-level cross-section constraints

    Search for dark matter produced in association with a Standard Model Higgs boson decaying into b-quarks using the full Run 2 dataset from the ATLAS detector

    Get PDF
    The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and b-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb(-1). The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson Z' or a pseudoscalar singlet a and which both provide a dark matter candidate chi. In the case of the two-Higgs-doublet model with an additional vector boson Z ', the observed limits extend up to a Z' mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar a is excluded for masses of the a up to 520 GeV and 240 GeV for tan beta = 1 and tan beta = 10 respectively. Limits on the visible cross-sections are set and range from to 0.05 fb to 3.26 fb, depending on the missing transverse momentum and b-quark jet multiplicity requirements

    Inclusive-photon production and its dependence on photon isolation in pp collisions at s \sqrt{s} = 13 TeV using 139 fb−1 of ATLAS data

    Get PDF
    Measurements of differential cross sections are presented for inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb−1 of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region
    corecore