1,336 research outputs found

    Relaxation of spherical systems with long-range interactions: a numerical investigation

    Full text link
    The process of relaxation of a system of particles interacting with long-range forces is relevant to many areas of Physics. For obvious reasons, in Stellar Dynamics much attention has been paid to the case of 1/r^2 force law. However, recently the interest in alternative gravities emerged, and significant differences with respect to Newtonian gravity have been found in relaxation phenomena. Here we begin to explore this matter further, by using a numerical model of spherical shells interacting with an 1/r^alpha force law obeying the superposition principle. We find that the virialization and phase-mixing times depend on the exponent alpha, with small values of alpha corresponding to longer relaxation times, similarly to what happens when comparing for N-body simulations in classical gravity and in Modified Newtonian Dynamics.Comment: 6 pages, 3 figures, accepted in the International Journal of Bifurcation and Chao

    Tomography of Collisionless Stellar Systems

    Full text link
    In this paper the concept of tomography of a collisionless stellar system of general shape is introduced, and a generalization of the Projected Virial Theorem is obtained. Applying the tomographic procedure we then derive a new family of virial equations which coincides with the already known ones for spherically symmetric systems. This result is obtained without any use of explicit expressions for the line-of-sight velocity dispersion, or spherical coordinate system.Comment: BAP-06-1994-016-OAB. 7 pages, postscript file. In press on Celestial Mechanic

    Galactic cannibalism in the galaxy cluster C0337-2522 at z=0.59

    Full text link
    According to the galactic cannibalism model, cD galaxies are formed in the center of galaxy clusters by merging of massive galaxies and accretion of smaller stellar systems: however, observational examples of the initial phases of this process are lacking. We have identified a strong candidate for this early stage of cD galaxy formation: a group of five elliptical galaxies in the core of the X-ray cluster C0337-2522 at redshift z=0.59. With the aid of numerical simulations, in which the galaxies are represented by N-body systems, we study their dynamical evolution up to z=0; the cluster dark matter distribution is also described as a N-body system. We find that a multiple merging event in the considered group of galaxies will take place before z=0 and that the merger remnant preserves the Fundamental Plane and the Faber-Jackson relations, while its behavior with respect to the Mbh-sigma relation is quite sensitive to the details of black hole merging [abridged].Comment: 30 pages, 7 figures, MNRAS (accepted

    Modelling elliptical galaxies: phase-space constraints on two-component (gamma1,gamma2) models

    Full text link
    In the context of the study of the properties of the mutual mass distribution of the bright and dark matter in elliptical galaxies, present a family of two-component, spherical, self-consistent galaxy models, where one density distribution follows a gamma_1 profile, and the other a gamma_2 profile [(gamma_1,gamma_2) models], with different total masses and ``core'' radii. A variable amount of Osipkov-Merritt (radial) orbital anisotropy is allowed in both components. For these models, I derive analytically the necessary and sufficient conditions that the model parameters must satisfy in order to correspond to a physical system. Moreover, the possibility of adding a black hole at the center of radially anisotropic gamma models is discussed, determining analytically a lower limit of the anisotropy radius as a function of gamma. The analytical phase-space distribution function for (1,0) models is presented, together with the solution of the Jeans equations and the quantities entering the scalar virial theorem. It is proved that a globally isotropic gamma=1 component is consistent for any mass and core radius of the superimposed gamma=0 model; on the contrary, only a maximum value of the core radius is allowed for the gamma=0 model when a gamma=1 density distribution is added. The combined effects of mass concentration and orbital anisotropy are investigated, and an interesting behavior of the distribution function of the anisotropic gamma=0 component is found: there exists a region in the parameter space where a sufficient amount of anisotropy results in a consistent model, while the structurally identical but isotropic model would be inconsistent.Comment: 29 pages, LaTex, plus 5 .eps figures and macro aaspp4.sty - accepted by ApJ, main journa

    Decoupled and inhomogeneous gas flows in S0 galaxies

    Full text link
    A recent analysis of the "Einstein" sample of early-type galaxies has revealed that at any fixed optical luminosity Lb S0 galaxies have lower mean X-ray luminosity Lx per unit Lb than ellipticals. Following a previous analytical investigation of this problem (Ciotti & Pellegrini 1996), we have performed 2D numerical simulations of the gas flows inside S0 galaxies in order to ascertain the effectiveness of rotation and/or galaxy flattening in reducing the Lx/Lb ratio. The flow in models without SNIa heating is considerably ordered, and essentially all the gas lost by the stars is cooled and accumulated in the galaxy center. If rotation is present, the cold material settles in a disk on the galactic equatorial plane. Models with a time decreasing SNIa heating host gas flows that can be much more complex. After an initial wind phase, gas flows in energetically strongly bound galaxies tend to reverse to inflows. This occurs in the polar regions, while the disk is still in the outflow phase. In this phase of strong decoupling, cold filaments are created at the interface between inflowing and outflowing gas. Models with more realistic values of the dynamical quantities are preferentially found in the wind phase with respect to their spherical counterparts of equal Lb. The resulting Lx of this class of models is lower than in spherical models with the same Lb and SNIa heating. At variance with cooling flow models, rotation is shown to have only a marginal effect in this reduction, while the flattening is one of the driving parameters for such underluminosity, in accordance with the analytical investigation.Comment: 32 pages LaTex file, plus 5 .ps figures and macro aasms4.sty -- Accepted on Ap

    Asymmetric Gravitational Lenses in TeVeS and Application to the Bullet Cluster

    Full text link
    Aims: We explore the lensing properties of asymmetric matter density distributions in Bekenstein's Tensor-Vector-Scalar theory (TeVeS). Methods: Using an iterative Fourier-based solver for the resulting non-linear scalar field equation, we numerically calculate the total gravitational potential and derive the corresponding TeVeS lensing maps. Results: Considering variations on rather small scales, we show that the lensing properties significantly depend on the lens's extent along the line of sight. Furthermore, all simulated TeVeS convergence maps strongly track the dominant baryonic components, non-linear effects, being capable of counteracting this trend, turn out to be very small. Setting up a toy model for the cluster merger 1E0657-558, we infer that TeVeS cannot explain observations without assuming an additional dark mass component in both cluster centers, which is in accordance with previous work.Comment: LaTex, 14 pages, 10 figures, references added, 2 figures removed, minor text changes to fit accepted version (A&A

    Radiative feedback from massive black holes in elliptical galaxies. AGN flaring and central starburst fueled by recycled gas

    Get PDF
    The importance of the radiative feedback from massive black holes at the centers of elliptical galaxies is not in doubt, given the well established relations among electromagnetic output, black hole mass and galaxy optical luminosity. We show how this AGN radiative output affects the hot ISM of an isolated elliptical galaxy with the aid of a high-resolution hydrodynamical code, where the cooling and heating functions include photoionization plus Compton heating. We find that radiative heating is a key factor in the self-regulated coevolution of massive black holes and their host galaxies and that 1) the mass accumulated by the central black hole is limited by feedback to the range observed today, and 2) relaxation instabilities occur so that duty cycles are small enough (~0.03) to account for the very small fraction of massive ellipticals observed to be in the "on" -QSO- phase, when the accretion luminosity approaches the Eddington luminosity. The duty cycle of the hot bubbles inflated at the galaxy center during major accretion episodes is of the order of 0.1-0.4. Major accretion episodes caused by cooling flows in the recycled gas produced by normal stellar evolution trigger nuclear starbursts coincident with AGN flaring. During such episodes the central sources are often obscured; but overall, in the bursting phase (1<z<3), the duty cycle of the black hole in its "on" phase is of the order of percents and it is unobscured approximately one-third of the time. Mechanical energy output from non-relativistic gas winds integrates to 2.3 10^{59} erg, with most of it caused by broadline AGN outflows. [abridged]Comment: ApJ resubmitted. 48 pages, 14 figures (some of them new, bitmapped, low resolution). New references added, typos correcte

    The Mass Assembly History of Spheroidal Galaxies: Did Newly-Formed Systems Arise Via Major Mergers?

    Get PDF
    We examine the properties of a morphologically-selected sample of 0.4<z<1.0 spheroidal galaxies in the GOODS fields in order to ascertain whether their increase in abundance with time arises primarily from mergers. To address this question we determine scaling relations between the dynamical mass determined from stellar velocity dispersions, and the stellar mass determined from optical and infrared photometry. We exploit these relations across the larger sample for which we have stellar masses in order to construct the first statistically robust estimate of the evolving dynamical mass function over 0<z<1. The trends observed match those seen in the stellar mass functions of Bundy et al. 2005 regarding the top-down growth in the abundance of spheroidal galaxies. By referencing our dynamical masses to the halo virial mass we compare the growth rate in the abundance of spheroidals to that predicted by the assembly of dark matter halos. Our comparisons demonstrate that major mergers do not fully account for the appearance of new spheroidals since z~1 and that additional mechanisms, such as morphological transformations, are required to drive the observed evolution.Comment: Accepted to ApJL; New version corrects the Millennium merger predictions--further details at http://www.astro.utoronto.ca/~bundy/millennium

    Weak homology of elliptical galaxies

    Get PDF
    We start by studying a small set of objects characterized by photometric profiles that have been pointed out to deviate significantly from the standard R^{1/4} law. For these objects we confirm that a generic R^{1/n} law, with n a free parameter, can provide superior fits (the best-fit value of n can be lower than 2.5 or higher than 10), better than those that can be obtained by a pure R^{1/4} law, by an R^{1/4}+exponential model, and by other dynamically justified self--consistent models. Therefore, strictly speaking, elliptical galaxies should not be considered homologous dynamical systems. Still, a case for "weak homology", useful for the interpretation of the Fundamental Plane of elliptical galaxies, could be made if the best-fit parameter n, as often reported, correlates with galaxy luminosity L, provided the underlying dynamical structure also follows a systematic trend with luminosity. We demonstrate that this statement may be true even in the presence of significant scatter in the correlation n(L). Preliminary indications provided by a set of "data points" associated with a sample of 14 galaxies suggest that neither the strict homology nor the constant stellar mass--to--light solution are a satisfactory explanation of the observed Fundamental Plane (abridged).Comment: 34 pages, 11 figures, accepted by Astronomy and Astrophysic

    Hydrostatic models for the rotation of extra-planar gas in disk galaxies

    Get PDF
    We show that fluid stationary models are able to reproduce the observed, negative vertical gradient of the rotation velocity of the extra-planar gas in spiral galaxies. We have constructed models based on the simple condition that the pressure of the medium does not depend on density alone (baroclinic instead of barotropic solutions: isodensity and isothermal surfaces do not coincide). As an illustration, we have successfully applied our method to reproduce the observed velocity gradient of the lagging gaseous halo of NGC 891. The fluid stationary models discussed here can describe a hot homogeneous medium as well as a "gas" made of discrete, cold HI clouds with an isotropic velocity dispersion distribution. Although the method presented here generates a density and velocity field consistent with observational constraints, the stability of these configurations remains an open question.Comment: 12 pages, 9 figures. Accepted for publication in Astronomy and Astrophysic
    • …
    corecore