387 research outputs found

    Same ammo, different weapons: Enzymatic extracts from two apple genotypes with contrasted susceptibilities to fire blight (Erwinia amylovora) differentially convert phloridzin and phloretin in vitro

    Get PDF
    The necrogenic bacterium Erwinia amylovora responsible for the fire blight disease causes cell death in apple tissues to enrich intercellular spaces with nutrients. Apple leaves contain large amounts of dihydrochalcones (DHCs), including phloridzin and its aglycone phloretin. Previous work showed an important decrease in the constitutive DHCs stock in infected leaves, probably caused by transformation reactions during the infection process. At least two flavonoid transformation pathways have been described so far: deglucosylation and oxidation. The aim of the present study was to determine whether DHCs are differentially converted in two apple genotypes displaying contrasted susceptibilities to the disease. Different analyses were performed: i) enzymatic activity assays in infected leaves, ii) identification/quantification of end-products obtained after in vitro enzymatic reactions with DHCs, iii) evaluation of the bactericidal activity of end-products. The results of the enzymatic assays showed that deglucosylation was dominant over oxidation in the susceptible genotype MM106 while the opposite was observed in the resistant genotype Evereste. These data were confirmed by LC–UV/Vis–MS analysis of in vitro reaction mixtures, especially because higher levels of o-quinoid oxidation products of phloretin were measured by using the enzymatic extracts of Evereste infected leaves. Their presence correlated well with a strong bactericidal activity of the reaction mixtures. Thus, our results suggest that a differential transformation of DHCs occur in apple genotypes with a potential involvement in the establishment of the susceptibility or the resistance to fire blight, through the release of glucose or of highly bactericidal compounds respectively

    Second-generation antihistamines: a study of poisoning in children

    Get PDF
    The toxicity of second-generation antihistamines after an overdose by a child is still unknown. The objective of this study is to use data from Poisons Centres in France to describe the toxicity profile of second-generation antihistamines for children and to compare the severity of poisoning observed from these with a first-generation antihistamine. This was a retrospective, multi-centre and observational study focusing on human cases of single-substance exposure to a second-generation antihistamine and to mequitazine, reported between 1 January 2001 and 31 December 2016 in Poisons Centres in France. From a total of 9403 children included, 5980 were exposed to a second-generation antihistamine and 3423 were exposed to mequitazine. The severity of exposure to second-generation antihistamines in children is low: among the children followed until a known outcome, 9% of children were symptomatic and in 97% of cases, the symptoms shown were of a minor-level severity (primarily drowsiness or restlessness). Depending on the substance, children who ingested doses 16 to 69 times the maximum recommended therapeutic dose remained asymptomatic. No deaths or severe symptoms were observed. No cases of lengthening of the QT interval or arrhythmias were identified. Mequitazine led to more symptoms than other substances (14.8% symptomatic children vs. 7.5%, Odd ratio (OR): 2.3 (2.0-2.6), p < 0.0001), more symptoms of moderate intensity (1.4 vs. 0.2%, OR: 8.3 (4.1-18.5), p < 0.0001) and more hospitalisation (19.1 vs. 8.7%, OR: 2.5, 95% CI: (2.2-2.8), p < 0.0001). The severity of poisoning from second-generation antihistamines appears to be low among children and considerably lower than poisoning caused by mequitazine

    T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora

    Get PDF
    Fire blight is a bacterial disease of Maloideae caused by Erwinia amylovora (Ea). This necrogenic enterobacterium uses a type III secretion system (T3SS) to inject type III effectors into the plant cells to cause disease on its susceptible hosts, including economically important crops like apple and pear. The expressions of marker genes of the salicylic acid (SA) and jasmonic acid (JA) defense regulation pathways were monitored by RT-qPCR in leaves of two apple genotypes, one susceptible and one resistant, challenged with a wild type strain, a T3SS-deficient strain or water. The transcriptional data taken together with hormone level measurements indicated that the SA pathway was similarly induced in both apple genotypes during infection by Ea. On the contrary, the data clearly showed a strong T3SS-dependent down-regulation of the JA pathway in leaves of the susceptible genotype but not in those of the resistant one. Accordingly, methyl-jasmonate treated susceptible plants displayed an increased resistance to Ea. Bacterial mutant analysis indicated that JA manipulation by Ea mainly relies on the type III effector DspA/E. Taken together, our data suggest that the T3SS-dependent down-regulation of the JA pathway is a critical step in the infection process of Malus spp. by Ea

    Histolocalization and physico-chemical characterization of dihydrochalcones: Insight into the role of apple major flavonoids

    Get PDF
    Flavonoids, like other metabolites synthesized via the phenylpropanoid pathway, possess a wide range of biological activities including functions in plant development and its interaction with the environment. Dihydrochalcones (mainly phloridzin, sieboldin, trilobatin, phloretin) represent the major flavonoid subgroup in apple green tissues. Although this class of phenolic compounds is found in very large amounts in some tissues (≈200 mg/g of leaf DW), their physiological significance remains unclear. In the present study, we highlight their tissue-specific localization in young growing shoots suggesting a specific role in important physiological processes, most notably in response to biotic stress. Indeed, dihydrochalcones could constitute a basal defense, in particular phloretin which exhibits a strong broad-range bactericidal and fungicidal activity. Our results also indicate that sieboldin forms complexes with iron with strong affinity, reinforcing its antioxidant properties and conferring to this dihydrochalcone a potential for iron seclusion and/or storage. The importance of localization and biochemical properties of dihydrochalcones are discussed in view of the apple tree defense strategy against both biotic and abiotic stresses

    Regolith behavior under asteroid-level gravity conditions: Low-velocity impacts into mm- and cm-sized grain targets

    Full text link
    In situ observations of small asteroids show that surfaces covered by boulders and coarse terrain are frequent on such bodies. Regolith grain sizes have distributions on approximately mm and cm scales, and the behavior of such large grains in the very low-gravity environments of small body surfaces dictates their morphology and evolution. In order to support the understanding of natural processes (e.g., the recapturing of impact ejecta) or spacecraft-induced interactions (e.g., the fate of a small lander), we aim to experimentally investigate the response of coarse-grained target surfaces to very-low-speed impacts (below 2 m/s). We present the outcome of 86 low-speed impacts of a cm-sized spherical projectile into a bed of simulated regolith, composed of irregular mm- and cm-sized grains. These impacts were performed under vacuum and microgravity conditions. Our results include measurements for the projectile coefficient of restitution and penetration depth, as well as ejecta production, speed, and mass estimation. We find that impact outcomes include the frequent occurrence of projectile bouncing and tangential rolling on the target surface upon impact. Ejecta is produced for impact speeds higher than about 12 cm/s, and ejecta speeds scale with the projectile to target the grain size ratio and the impact speed. Ejected mass estimations indicate that ejecta is increasingly difficult to produce for increasing grain sizes. Coefficients of restitution of rebounding projectiles do not display a dependency on the target grain size, unlike their maximum penetration depth, which can be scaled with the projectile to target grain size ratio. Finally, we compare our experimental measurements to spacecraft data and numerical work on Hayabusa 2's MASCOT landing on the surface of the asteroid Ryugu

    Laser desorption ionization mass spectrometry as an analytical tool for the investigation of Malus X Domestica treated by selected plant resistant inducers

    Get PDF
    Apple is a very important agricultural plant, and globally cultivated fruit tree. For its protection against pathogens, pesticides are commonly used, which poses a heavy burden on the environment. Therefore alternative methods of crop protection are being widely explored, some of them focusing on the stimulation of the plant’s immune defense (e.g. development of resistant genotypes, use of plant resistant inducers). In this respect, the induced formation of protective plant metabolites (phytoalexins) represents the most interesting strategy. Phytoalexins are monitored mostly by liquid chromatography coupled with mass spectrometry (LC-MS). For phenolic phytoalexins, matrix free laser desorption ionization (LDI) may provide a promising supplement or alternative, particularly as many phenols exhibit close structural similarities to commercial matrices used in matrix assisted laser desorption ionization (MALDI). Contrary to LC-MS, LDI-MS can be performed without time consuming sample preparation or chromatographic method optimization and is not limited to specific solvents

    Dihydrochalcones: Implication in resistance to oxidative stress and bioactivities against advanced glycation end-products and vasoconstriction

    Get PDF
    Flavonoids are a group of polyphenol compounds with known antioxidant activities. Among them, dihydrochalcones are mainly found in apple leaves (Malus domestica). Glycosylated dihydrochalcones were previously found in large amounts in leaves of two genotypes of Malus with contrasting resistance to fire blight, a bacterial disease caused by Erwinia amylovora. In the present study we demonstrate that soluble polyphenol patterns comprised phloridzin alone or in combination with two additional dihydrochalcones, identified as sieboldin and trilobatin. Presence of sieboldin in young leaves correlated well with a high 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Moreover, these leaves displayed enhanced tolerance to paraquat, a photooxidative-stress generating herbicide. Interestingly, phloridzin had a high activity in the oxygen radical absorbance capacity (ORAC) assay, but its presence alone in leaves did not correlate with tolerance to paraquat. In order to further characterise the activity of these compounds, we tested their ability to prevent oxidative-dependent formation of advanced glycation end-products (AGEs) and phenylephrine-induced contraction of isolated rat mesenteric arteries. The antioxidant capacity of sieboldin was clearly demonstrated by showing that this compound (i) prevented vasoconstriction and (ii) inhibited AGEs formation. Both assays provided interesting information concerning a potential use of sieboldin as a therapeutic. Hence, our results strongly argue for a bioactivity of dihydrochalcones as functional antioxidants in the resistance of Malus leaves to oxidative stress. In addition, we demonstrate for the first time that sieboldin is a powerful multipotent antioxidant, effective in preventing physiopathological processes. Further work should aim at demonstrating the potential use of this compound as a therapeutic in treating free radical-involving diseases

    Surfactin Protects Wheat against Zymoseptoria tritici and Activates Both Salicylic Acid- and Jasmonic Acid-Dependent Defense Responses

    Get PDF
    Natural elicitors induce plant resistance against a broad spectrum of diseases, and are currently among the most promising biocontrol tools. The present study focuses on the elicitor properties of the cyclic lipopeptide surfactin on wheat, in order to stimulate the defenses of this major crop against the challenging fungal pathogen Zymoseptoria tritici. The protection efficacy of surfactin extracted from the strain Bacillus amyloliquefaciens S499 was investigated through greenhouse trials. Surfactin protected wheat by 70% against Z. tritici, similarly to the chemical reference elicitor Bion®50WG. In vitro biocidal assays revealed no antifungal activities of surfactin towards the pathogen. A biomolecular RT-qPCR based low-density microarray tool was used to study the relative expression of 23 wheat defense genes. Surfactin significantly induced wheat natural defenses by stimulating both salicylic acid- and jasmonic acid-dependent signaling pathways. Surfactin was successfully tested as an elicitor on the pathosystem wheat–Z. tritici. These results promote further sustainable agricultural practices and the reduction of chemical inputs

    Using Molecular Tools To Decipher the Complex World of Plant Resistance Inducers: An Apple Case Study

    Get PDF
    Exogenous application of plant resistance inducers (PRIs) able to activate plant defenses is an interesting approach for new integrated pest management practices. The full integration of PRIs into agricultural practices requires methods for the fast and objective upstream screening of efficient PRIs and optimization of their application. To select active PRIs, we used a molecular tool as an alternative to methods involving plant protection assays. The expressions of 28 genes involved in complementary plant defense mechanisms were simultaneously determined by quantitative real-time PCR in PRI-treated tissues. Using a set of 10 commercial preparations and considering the pathosystem apple/Erwinia amylovora, this study shows a strong correlation between defense activation and protection efficiency in controlled conditions, thus enabling the easy identification of promising PRIs in fire blight protection. Hence this work clearly highlights the benefits of using a molecular tool to discriminate nonactive PRI preparations and provides useful molecular markers for the optimization of their use in orchard

    Intimal smooth muscle cells are a source but not a sensor of anti-inflammatory CYP450 derived oxylipins

    Get PDF
    AbstractVascular pathologies are associated with changes in the presence and expression of morphologically distinct vascular smooth muscle cells. In particular, in complex human vascular lesions and models of disease in pigs and rodents, an intimal smooth muscle cell (iSMC) which exhibits a stable epithelioid or rhomboid phenotype in culture is often found to be present in high numbers, and may represent the reemergence of a distinct developmental vascular smooth muscle cell phenotype. The CYP450-oxylipin - soluble epoxide hydrolase (sEH) pathway is currently of great interest in targeting for cardiovascular disease. sEH inhibitors limit the development of hypertension, diabetes, atherosclerosis and aneurysm formation in animal models. We have investigated the expression of CYP450-oxylipin-sEH pathway enzymes and their metabolites in paired intimal (iSMC) and medial (mSMC) cells isolated from rat aorta. iSMC basally released significantly larger amounts of epoxy-oxylipin CYP450 products from eicosapentaenoic acid > docosahexaenoic acid > arachidonic acid > linoleic acid, and expressed higher levels of CYP2C12, CYP2B1, but not CYP2J mRNA compared to mSMC. When stimulated with the pro-inflammatory TLR4 ligand LPS, epoxy-oxylipin production did not change greatly in iSMC. In contrast, LPS induced epoxy-oxylipin products in mSMC and induced CYP2J4. iSMC and mSMC express sEH which metabolizes primary epoxy-oxylipins to their dihydroxy-counterparts. The sEH inhibitors TPPU or AUDA inhibited LPS-induced NFκB activation and iNOS induction in mSMC, but had no effect on NFκB nuclear localization or inducible nitric oxide synthase in iSMC; effects which were recapitulated in part by addition of authentic epoxy-oxylipins. iSMCs are a rich source but not a sensor of anti-inflammatory epoxy-oxylipins. Complex lesions that contain high levels of iSMCs may be more resistant to the protective effects of sEH inhibitors
    • …
    corecore