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Vascular pathologies are associated with changes in the presence and expression of morphologically
distinct vascular smooth muscle cells. In particular, in complex human vascular lesions and models of
disease in pigs and rodents, an intimal smooth muscle cell (iSMC) which exhibits a stable epithelioid or
rhomboid phenotype in culture is often found to be present in high numbers, and may represent the
reemergence of a distinct developmental vascular smooth muscle cell phenotype. The CYP450-oxylipin -
soluble epoxide hydrolase (sEH) pathway is currently of great interest in targeting for cardiovascular
disease. sEH inhibitors limit the development of hypertension, diabetes, atherosclerosis and aneurysm
formation in animal models. We have investigated the expression of CYP450-oxylipin-sEH pathway
enzymes and their metabolites in paired intimal (iSMC) and medial (mSMC) cells isolated from rat aorta.
iSMC basally released significantly larger amounts of epoxy-oxylipin CYP450 products from eicosa-
pentaenoic acid > docosahexaenoic acid > arachidonic acid > linoleic acid, and expressed higher levels of
CYP2C12, CYP2B1, but not CYP2J mRNA compared to mSMC. When stimulated with the pro-
inflammatory TLR4 ligand LPS, epoxy-oxylipin production did not change greatly in iSMC. In contrast,
LPS induced epoxy-oxylipin products in mSMC and induced CYP2J4. iSMC and mSMC express sEH which
metabolizes primary epoxy-oxylipins to their dihydroxy-counterparts. The sEH inhibitors TPPU or AUDA
inhibited LPS-induced NFkB activation and iNOS induction in mSMC, but had no effect on NFkB nuclear
localization or inducible nitric oxide synthase in iSMC; effects which were recapitulated in part by
addition of authentic epoxy-oxylipins. iSMCs are a rich source but not a sensor of anti-inflammatory
epoxy-oxylipins. Complex lesions that contain high levels of iSMCs may be more resistant to the pro-
tective effects of sEH inhibitors.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Vascular smooth muscle cells (SMC) exhibit both plasticity and
heterogeneity in culture and in vascular pathologies such as
atherosclerosis or aneurysm [1e5]. In particular vascular disease is
associated with stable phenotypically distinct populations of SMC
that can be cultured for further analysis. The most commonly uti-
lized SMC phenotype used in culture is the “adult” medial spindle
shaped (m)SMC that grows typically with “hill and valley”
morphology. However, diseased vessels also contain epithelial,
rhomboid or “p” phenotype SMC often associated with neointimal
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Basal and LPS stimulated epoxy-oxylipin production iSMC and mSMC. Endogenous 5,6- and 14,15-DHETs (A and B), 9,10, 12-13-EPOME and DHOME, 17,18-DHEQ, and
19,20-DiHDPA (C and D) release (pg/ml) from untreated, and LPS (1 mg/ml) treated iSMC (A and C) and mSMC (B and D) over 48 h. For comparison, panels A and B and C and D have
been shownwith the same scale. Panel D is also shownwith an expanded scale so significant differences can more clearly be seen. * indicates p < 0.05 by Wilcoxon signed rank test
between control and LPS treatment. (E) EET and DHET production (pg/ml) from untreated intimal (i)SMC and medial (m)SMC in response to the addition of arachidonic acid
(10 mM; 30 min), to show capacity each cell type to produce EETs. (F) Change in EET production capacity in iSMC and mSMC after TLR-4 ligand activation (LPS, 1 mg/ml; 24 h). After
24 h, medium from untreated or LPS treated cells was removed and fresh medium containing arachidonic acid added (10 mM; 30 min). The level of each EET produced in response
to AA from the LPS treated cells was compared to the levels produced from AA in untreated cells to give total combined fold EET difference. * indicates p < 0.05 by one-sample t-test
between control and LPS treatment. Data represent the mean ± SEM from n ¼ 4 experiments.
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thickening and remodeling. These intimal iSMC phenotypes can be
isolated from rat aorta [1,5e7], pig coronary artery and human
atherosclerotic lesions [3,8,9]. iSMC phenotypes differ from adult
medial SMC not only in morphology, but also in terms of prolifer-
ative ability and their expression of S100A, PDGF-B, PDGF a-re-
ceptor, a1 (I) collagen, CYP1AI, elastin, osteopontin, plasminogen
activator [6e8,10,11], along with cyclo-oxygenase-1 and COX-2,
prostanoid production and peroxisome-proliferator activated re-
ceptor (PPAR)-g expression [12,13].

In addition to COX pathways, lipoxygenase and CYP450 en-
zymes are also capable of metabolizing arachidonic acid and related
polyunsaturated fatty acids (linoleic acid (LA), docosahexaenoic
acid (DHA) and eicosapentaenoic acid (EPA)) to series of biologi-
cally active mediators [14,15]. The roles of both CYP450 lipid
metabolizing pathways, and potential beneficial effects of n3-
PUFAs DHA and EPA in vascular biology, are of current intense in-
terest [16e20]. Feeding DHA and/or EPA to humans [21] or rats [22]
increases their respective epoxy-oxylipin products in circulation.
Whether iSMC and mSMC differentially metabolize or use these
products is not known. A number of CYPs canmetabolize fatty acids
into series of oxylipin mediators by a combination of either epox-
ygenases, lipoxygenase-like or u- and u-1-hydroxylase activities
[15]. Using AA as an example, both epoxyeicosatrienoic acids (EETs)
and hydroxyeicosatetraenoic acids (HETEs) can be formed from



Fig. 2. Basal expression of CYPs and sEH expression in iSMC and mSMC. qRT-PCR analysis of rat CYP2J family (A), CYP2B1 (B), CYP2C family (C) and sEH (D) in iSMC and mSMC.
Data show relative expression compared to 18S as mean ± SEM from n ¼ 3 separate experiments. * indicates p < 0.05 by Wilcoxon signed rank test between iSMC and mSMC.
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these activities [15]. Although approximately one fifth of the 57
putative CYPs in man have shown lipid metabolizing activities [16],
the major contributors to epoxygenase activity are thought to be
the CYP2 enzymes, in particular members of the CYP2J and CYP2C
subfamilies [15,23e26].

Once formed, epoxygenase products are rapidly removed
[15,18]. Soluble epoxide hydrolase (sEH; encoded by the gene
ephx2) appears to be key in the metabolism of these oxylipins
[18,27], and sEH-inhibitors (sEH-I) have been developed which
limit the breakdown of oxylipins to their more soluble dihydroxy-
counterparts. sEH-I use in mouse models, or mice with genetic
disruption of sEH exhibit reduced neointima formation after injury
[28], reduced atherosclerosis, and aneurysm formation, reduced
hypertension [29] and reduced indices of type 2 diabetes [30], in-
flammatory cell recruitment [31] and pain [32]. The aim of this
study was to assess i) the formation and ii) the roles of oxylipins
derived from CYP450 enzymes in regulating inflammatory re-
sponses in paired mSMC and iSMC.
2. Materials and methods

2.1. Materials

AUDA (12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-
dodecanoic acid), TPPU (N-[1-(1-oxopropyl)-4-piperidinyl]-N0-[4-
(trifluoromethoxy)phenyl)]-urea), and authentic oxylipins (EETs,
DHEQ, and HDPA) were from Cayman Chemical Company (Cam-
bridge Bioscience, Cambridge, UK). SKF525A (a-phenyl-a-propyl-2-
(diethylamino)ethyl ester-benzeneacetic acid) was from Biomol
(Affiniti Research Products, Exeter, UK). Rabbit anti-p65 was from
Santa Cruz (Heidelberg, Germany). Unless stated, all other reagents
were from SigmaeAldrich (Poole, Dorset, UK).

2.2. Cell and tissue culture

iSMC (WKY12-22) and mSMC (WKY3m-22) (Supplemental
Figure 1) were isolated and cultured in DMEM supplemented
with antibiotic/antimycotic mix, and 10% FBS; 37 �C; 5% CO2; 95%
air, as previously described [12]. Since FBS interferes with lipid
substrate composition and the release and detection of eicosanoids
(M. Edin, unpublished observations), all experiments were per-
formed with DMEM supplemented with antibiotic/antimycotic
mix, without FBS.

2.3. Real-time qRT-PCR

CYP2J3 and sEH mRNA was measured by the Taqman qRT-PCR
ddCt method. mRNA for other CYPs and sEH were measured us-
ing the Sybr Green ddCT method. Targets were normalized to 18S
expression. RNA was extracted using the Thermo Scientific RNA
extraction kit and 1 mg of total RNA was used to generate cDNA
using Superscript II (Invitrogen) according to manufacturer's in-
structions. Sybr green qPCR was performed using Premix Ex Taq II
mastermix (Takara) using a Chromo-4 machine and Opticon soft-
ware. Genomic sequences were obtained from the UCSC Genome
Browser website (http://genome.ucsc.edu/cgi-bin/hgGateway) and
primers for rat CYP2J4, CYP2J10, CYP2B1, CYP2C11, CYP2C12,
CYP2C22, CYP2C23, and CYP2C24 (Supplemental Table 1) were
designed from NCBI's Primer Blast website (http://www.ncbi.nlm.
nih.gov/tools/primer-blast/index.cgi? LINK_LOC¼BlastHome).

http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?%20LINK_LOC=BlastHome
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?%20LINK_LOC=BlastHome
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?%20LINK_LOC=BlastHome


Fig. 3. Regulation of CYP2J and sEH expression in iSMC and mSMC in response to
LPS. Changes in CYP2J, CYP2C family, CYP2B1 and sEH mRNA expression in iSMC (A)
and mSMC (B) in response to LPS treatment (1 mg/ml; 24 h). Data show relative
expression compared to 18S as mean ± SEM from n ¼ 3 separate experiments. * in-
dicates p < 0.05 byWilcoxon signed rank test between untreated and LPS treatment for
each cell type individually.
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2.4. Inducible nitric oxide synthase activity, cell viability,
immunoassays and oxylipin measurements

iNOS activity was measured by the accumulated formation of
nitrite in themedium by the Greiss reaction as previously described
[33]. In these experiments cell viability by MTT assays was also
routinely performed as previously described [34]; and there were
no significant changes between treatments groups. Immunofluo-
rescence for p65 was performed as previously described using
primary antibody dilutions of 1:100 [34]. LC/MS/MS analysis of
oxylipin products in culture supernatants was as previously
described [35].

3. Results

3.1. Unstimulated iSMC produce larger amounts of epoxy-oxylipins
than mSMC

The epoxygenase-sEH products of AA 5,6-DHET, 14,15-DHET
(Fig. 1A and B); LA: 9,10-, and 12,13-epoxy-octadecenoic acid
(EpOME), and their respective sEH products 9,10-DHOME, and
12,13-DHOME; DHA: 19,20-dihydroxy-docosapentaenoic acid
(DiHDPA); and EPA (17,18-DHEQ) (Fig. 1C and D) were released by
mSMC and iSMC over 48 h. 17,18-DHEQ was the most abundant
epoxygenase product detected under basal culture conditions in
both iSMC andmSMC cultures. iSMC secreted 2e3 foldmore of EPA,
DHA and AA derived oxylipins than mSMC (Fig. 1), whereas EPOME
production from LA (the most minor product formed in both cell
types) was higher in mSMC compared to iSMC.

3.2. mSMC but not iSMC epoxy-oxylipin production is induced by
TLR-4 activation

A number of epoxy-oxylipins are anti-inflammatory and are
induced during inflammation [16]. In response to TLR-4 activation,
total epoxy-oxylipin production did not dramatically change in
iSMC, though there were small but significant increases in the
minor products (9,10-EPOME, 12,13-EPOME and 5,6-DHET; Fig. 1A
and C). In contrast, in mSMC, 5,6-, 14,15-DHET, 17,18-DHEQ, and
19,20-DiHDPA were all significantly elevated in response to TLR-4
activation with LPS (Fig. 1B and D).

AA and LA lipoxygenase products (5-, 8-, 11-, 12-, 15 and 19-HETE,
and 9- and 13-HODE respectively), were also detected from unsti-
mulated iSMC and mSMC (Supplemental Figure 2), and with the
exception of 12-HETE, could all be induced by LPS. Lipoxygenase
product formation was higher in mSMC compared to iSMC both
basally and in response to LPS (Supplemental Figure 2).

To test at which level epoxy-oxylipin production is regulated,
iSMC and mSMC in serum free culture were treated with AA
(10 mM; 30 min) to examine the maximum capacity of each cell
type to produce epoxygenase products independently of substrate
formation by PLA2. AA alone induced a similar release of 5,6-, 8,9-,
11,12-, and 14,15-EET in both iSMC and mSMC (Fig. 1E). DHETs were
produced in much lower amounts (Fig. 1E); as would be expected
from using these high levels of AA over only 30 min. In contrast to
this identical basal capacity, TLR-4 activation reduced this capacity
in iSMC, whereas the capacity in mSMC increased 1.5 fold, sug-
gesting LPS induces CYP-epoxygenase enzyme activity in mSMC
while reduces them in iSMC (Fig. 1F).

3.3. iSMC and mSMC differentially express lipid metabolizing CYPs
and sEH basally and after TLR-4 activation

mSMC and iSMC both expressed CYP2J3, CYP2J4, CYP2J10,
CYP2B1, CYP2C11, CYP2C12, CYP2C24 and sEH (ephx2) mRNA, but
not CYP2C22 or CYP2C23 mRNA (Fig. 2). There was no difference in
CYP2J or CYP2C11 expression at the mRNA level (relative to 18S),
however iSMC expressed relatively more CYP2B1, CYP2C11 and
CYP2C24 mRNA, whereas mSMC expressed significantly higher
levels of sEH (Fig. 2D). In iSMC, CYP2J3, CYP2J4 and CYP2J10 mRNA
levels were suppressed after LPS treatment mirroring the decrease
in total synthetic capacity (Fig. 3A). In contrast, in mSMC CYP2J4
mRNA was induced and CYPJ3, CYP2B1, CYP2C isoforms and sEH
were unaltered (Fig. 3B).

3.4. sEH inhibitors reduce TLR-4 induced iNOS and NF-kB in mSMC
but not iSMC

Treatment with the sEH-I TPPU (1 mM) significantly reduced
TLR-4 ligand LPS induced iNOS activity in mSMC, but not iSMC
(Fig. 4A). Conversely, inhibiting basal epoxygenase activity using
SKF525A (10 mM; 72 h) induced iNOS activity in mSMC but not
iSMC (Fig. 4B). In addition, a distinct sEH-I, AUDA (10 mM) or
addition of 11,12-EETor 14,15-EET (300 nM) similarly inhibited LPS-



Fig. 4. Epoxy-oxylipins are anti-inflammatory in mSMC but not iSMC. Inducible nitric oxide synthase activity (iNOS) measured by accumulated nitrite formation (mM) in: (A)
iSMC and mSMC treated with or without LPS (1 mg/ml; 72 h), in the presence or absence of the sEH inhibitor TPPU (1 mM; given as a 1 h pretreatment before addition of LPS); (B)
iSMC and mSMC treated with or without the epoxygenase inhibitor SKF525A (10 mM; 72 h); and (C) mSMC treated with or without LPS (1 mg/ml; 72 h), in the presence or absence of
the sEH inhibitor AUDA (10 mM), 11,12-EET (300 nM) or 14,15-EET (300 nM). (D) Effect of sEH inhibitors on LPS-induced NF-kB p65 nuclear localization. iSMC (left hand panels) or
mSMC (right hand panels) were treated with LPS (1 mg/ml) in the presence or absence of TPPU (1 mM) or AUDA (10 mM) for 2 h and p65 nuclear localization examined. iSMC show
constitutive p65 nuclear localization which is not affected by AUDA or TPPU. LPS induces p65 nuclear localization in mSMC (top right panels; indicated by white arrows), which is
inhibited by either AUDA or TPPU co-incubation. Immunofluorescent micrographs are representative of n ¼ 3 experiments. As a negative control, in some experiments primary
antibody was omitted (2� Ab control) which showed no specific staining.
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induced iNOS activity (Fig. 4C). As TLR-4 induced iNOS requires NF-
kB activation, we examined the effects of sEH-Is on the nuclear
localization of the p65 subunit. iSMC had constitutively high levels
of p65 expressed in the nucleus, which were not greatly altered by
LPS, TPPU or AUDA (Fig. 4D). In contrast, in mSMC p65 was pre-
dominantly cytoplasmic under standard culture conditions. LPS
induced a distinct nuclear trans-localization of p65 inmSMC, which
was abolished when cells were pretreated with either AUDA or
TPPU (Fig. 4D).

4. Discussion

Restenotic and complex vascular lesions are associated with a
heterogeneous population of vascular smooth muscle cells [1,2].
Although vascular smoothmuscle cells show great plasticity i.e. the
phenotypic switch between contractile and synthetic phenotypes
classically seenwith mSMC, and potential to formmacrophage-like
cells [36], distinct phenotypic stable populations also emerge
which have a distinct epitheliod/rhomboid morphology when
grown in culture [1,4,6,8,9]. These iSMC may represent a develop-
mental phenotype that expands during disease progression [1e5].
Functionally these iSMC in vitro are highly proliferative, even in low
serum concentrations and are more inflammatory [1,4e6,8,9,13],
highlighted by our finding that iSMC exhibit constitutive p65 nu-
clear localization. As such iSMC are considered a pathological
phenotype in restenosis, and contribute to the pro-inflammatory
milieu of atherosclerotic lesions.
We used a targeted lipidomic approach to identify the profile of
oxylipins in iSMC and mSMC. iSMC were a rich source of oxylipins
which are known to have anti-inflammatory activities
[18,20,27,32,37]. Interestingly, iSMC unlike mSMC were not sensi-
tive to the anti-inflammatory actions of sEH inhibitors. This lack of
sensitivity of endogenous anti-inflammatory oxylipins may add to
the explanation of the pro-inflammatory phenotype of these cells.
Moreover, since sEH inhibitors are being tested experimentally and
clinically, the emergence and contribution of iSMC to a lesion may
limit the effectiveness of sEH inhibitors. iSMC do express relatively
lower levels of sEH mRNA; however, this is unlikely to explain the
lack of sensitivity of sEH-inhibitors as the EH metabolites are
clearly still the major products. A synthetic role combined with a
lack of sensitivity for iSMC is not uncommon, as similar findings
have also been described for iNOS, in that intimal cells are high
expressers and producers, but lack sensitivity to the actions of NO
itself [38].

There is a great interest in identifying markers that may
differentiate iSMC and mSMC, and although no single oxylipin
metabolite distinguishes the two, here at least in vitro CYP2C12,
CYP2B1 and potentially CYP2J10 may help to distinguish iSMC
from mSMC. In the liver, inflammation tends to results in a
widespread suppression of CYPs [39]. In contrast, in human
monocytes, macrophages and endothelial cells, TLR-4 activation
results in the induction of CYP2J2, but not CYP2C8 or CYP2C9
[37,40]. Interestingly, CYP regulation in iSMC in response to LPS
resembles a response similar to the liver, in that a widespread
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suppression of CYPs were observed. In contrast, in mSMC, LPS
induced total CYP capacity and the mRNA for at least one CYP,
CYP2J4. Unlike humans who have just one CYP2J family member
(CYP2J2), rats have multiple CYP2J enzymes. CYP2J4, with
respect of sensitivity to LPS, may be most similar to human
CYP2J2.

EPA and DHA are considered potential key constituents under-
lying the cardiovascular health benefits of diets such as the Medi-
terranean diet. Of the products measured, the AA products, 5,6- and
14,15,DHET; the LA products: 9,10-EPOME and 12,13-EPOME (and
9,10-DHOME and 12,13-DHOME); the DHA product 19,20-DiHDPA;
and the EPA product 17,18-DHEQ were all detectable. The EPA
product 17,18-DHEQ was the most abundant; a finding consistent
with measurements from fresh rat aorta (Supplemental Figure 3),
and circulating levels of oxylipins in human healthy volunteers
[41]. The enrichment of human or rodent diets with DHA or EPA
leads to increases in respective DHA and EPA epoxy-oxylipin
products [21,22]. Vascular metabolism of EPA and DHA into
epoxy-oxylipins could therefore contribute to the purported ben-
efits of these lifestyle modifications.

Since the receptor targets of these oxylipin products remain
elusive [42], and we cannot selectively remove these mediators, we
are still greatly limited in our ability to dissect out the roles of these
endogenously produced epoxy-oxylipin mediators. We and others
have suggested PPARs as anti-inflammatory receptor targets for
EETs [43]. We previously reported iSMC and mSMC contain all
PPARs [12], however in our hands, the concomitant use of PPARa
(GW6471), b/d (GSK0660) or -g (GW9662) antagonists did not
affect the inhibitory actions of EETs on iNOS (SJT and DBB; un-
published observations). iSMC and mSMC are derived from rats of
an identical genetic background [6], and have been grown and
treated in identical cell culture conditions. The fact that iSMC
produce but do not respond to epoxy-lipins, whereas mSMC pro-
duce and respond to epoxy-oxylipins may make these two cell
populations extremely useful tools for identifying oxylipin receptor
targets.

In conclusion, pathological iSMC represent a source but not
sensor of epoxy-oxylipin mediators. Although the contribution of
iSMC to differing vascular pathologies is still being debated, their
presence in larger amounts and in complex lesions may limit the
anti-inflammatory and protective effects of sEH inhibitors in highly
developed pre-existing lesions. Understanding the signaling (or
lack thereof) of oxylipins in iSMC may help to reveal new receptor
targets and help explain the benefits of diets rich in u�3 DHA and
EPA.
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