3,072 research outputs found
Dynamical CPA approach to an itinerant fermionic spin glass model
We study a fermionic version of the Sherrington-Kirkpatrick model including
nearest-neighbor hopping on a -dimensional simple cubic lattices. The
problem is reduced to one of free fermions moving in a dynamical effective
random medium. By means of a CPA method we derive a set of self-consistency
equations for the spin glass order parameter and for the Fourier components of
the local spin susceptibility. In order to solve these equations numerically we
employ an approximation scheme which restricts the dynamics to a feasible
number of the leading Fourier components. From a sequence of systematically
improved dynamical approximations we estimate the location of the quantum
critical point.Comment: 9 pages, 6 figures, revised versio
Semi-fermionic representation of SU(N) Hamiltonians
We represent the generators of the SU(N) algebra as bilinear combinations of
Fermi operators with imaginary chemical potential. The distribution function,
consisting of a minimal set of discrete imaginary chemical potentials, is found
for arbitrary N. This representation leads to the conventional temperature
diagram technique with standard Feynman codex, except that the Matsubara
frequencies are determined by neither integer nor half-integer numbers. The
real-time Schwinger-Keldysh formalism is formulated in the framework of complex
distribution functions. We discuss the continuous large N and SU(2) large spin
limits. We illustrate the application of this technique for magnetic and
spin-liquid states of the Heisenberg model.Comment: 11 pages, 7 EPS figures included, extended versio
New technique for replica symmetry breaking with application to the SK-model at and near T=0
We describe a novel method which allows the treatment of high orders of
replica-symmetry-breaking (RSB) at low temperatures as well as at T=0 directly,
without a need for approximations or scaling assumptions. It yields the low
temperature order function q(a,T) in the full range and is
complete in the sense that all observables can be calculated from it. The
behavior of some observables and the finite RSB theory itself is analyzed as
one approaches continuous RSB. The validity and applicability of the
traditional continuous formulation is then scrutinized and a new continuous RSB
formulation is proposed
Selforganized 3-band structure of the doped fermionic Ising spin glass
The fermionic Ising spin glass is analyzed for arbitrary filling and for all
temperatures. A selforganized 3-band structure of the model is obtained in the
magnetically ordered phase. Deviation from half filling generates a central
nonmagnetic band, which becomes sharply separated at T=0 by (pseudo)gaps from
upper and lower magnetic bands. Replica symmetry breaking effects are derived
for several observables and correlations. They determine the shape of the
3-band DoS, and, for given chemical potential, influence the fermion filling
strongly in the low temperature regime.Comment: 13 page
One-step replica symmetry breaking solution for a highly asymmetric two-sublattice fermionic Ising spin glass model in a transverse field
The one-step replica symmetry breaking (RSB) is used to study a
two-sublattice fermionic infinite-range Ising spin glass (SG) model in a
transverse field . The problem is formulated in a Grassmann path
integral formalism within the static approximation. In this model, a parallel
magnetic field breaks the symmetry of the sublattices. It destroys the
antiferromagnetic (AF) order, but it can favor the nonergodic mixed phase
(SG+AF) characterizing an asymmetric RSB region. In this region,
intra-sublattice disordered interactions increase the difference between
the RSB solutions of each sublattice. The freezing temperature shows a higher
increase with when enhances. A discontinue phase transition from the
replica symmetry (RS) solution to the RSB solution can appear with the presence
of an intra-sublattice ferromagnetic average coupling. The field
introduces a quantum spin flip mechanism that suppresses the magnetic orders
leading them to quantum critical points. Results suggest that the quantum
effects are not able to restore the RS solution. However, in the asymmetric RSB
region, can produce a stable RS solution at any finite temperature for
a particular sublattice while the other sublattice still presents RSB solution
for the special case in which only the intra-sublattice spins couple with
disordered interactions.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.
Dynamical solutions of a quantum Heisenberg spin glass model
We consider quantum-dynamical phenomena in the ,
infinite-range quantum Heisenberg spin glass. For a fermionic generalization of
the model we formulate generic dynamical self-consistency equations. Using the
Popov-Fedotov trick to eliminate contributions of the non-magnetic fermionic
states we study in particular the isotropic model variant on the spin space.
Two complementary approximation schemes are applied: one restricts the quantum
spin dynamics to a manageable number of Matsubara frequencies while the other
employs an expansion in terms of the dynamical local spin susceptibility. We
accurately determine the critical temperature of the spin glass to
paramagnet transition. We find that the dynamical correlations cause an
increase of by 2% compared to the result obtained in the spin-static
approximation. The specific heat exhibits a pronounced cusp at .
Contradictory to other reports we do not observe a maximum in the -curve
above .Comment: 8 pages, 7 figure
Iteratively reweighted compressive sensing based algorithm for spectrum cartography in cognitive radio networks
© 2014 IEEE. Spectrum cartography is the process of constructing a map showing Radio Frequency signal strength over a finite geographical area. In our previous work we formulated spectrum cartography as a compressive sensing problem and we illustrated how cartography can be used in the context of discovering spectrum holes in space that can be exploited locally in cognitive radio networks. This paper investigates the performance of compressive sensing based approach to cartography in a fading environment where realtime channel estimation is not feasible. To accommodate for lack of channel information we take an iterative approach. We extend the well-known iteratively reweighted ℓ1 minimisation approach by exploiting spatial correlation between two points in space. We evaluate the performance in an urban environment where Rayleigh fading is prominent. Our numerical results show a significant improvement in the probability of accurately making a spectrum sensing decision, in comparison to the well-known weighted approach and the traditional compressive sensing based method
Antiferromagnetic Ising spin glass competing with BCS pairing interaction in a transverse field
The competition among spin glass (SG), antiferromagnetism (AF) and local
pairing superconductivity (PAIR) is studied in a two-sublattice fermionic Ising
spin glass model with a local BCS pairing interaction in the presence of an
applied magnetic transverse field . In the present approach, spins in
different sublattices interact with a Gaussian random coupling with an
antiferromagnetic mean and standard deviation . The problem is
formulated in the path integral formalism in which spin operators are
represented by bilinear combinations of Grassmann variables. The saddle-point
Grand Canonical potential is obtained within the static approximation and the
replica symmetric ansatz. The results are analysed in phase diagrams in which
the AF and the SG phases can occur for small ( is the strength of the
local superconductor coupling written in units of ), while the PAIR phase
appears as unique solution for large . However, there is a complex line
transition separating the PAIR phase from the others. It is second order at
high temperature that ends in a tricritical point. The quantum fluctuations
affect deeply the transition lines and the tricritical point due to the
presence of .Comment: 16 pages, 6 figures, accepted Eur. Phys. J.
Bound hole states in a ferromagnetic (Ga,Mn)As environment
A numerical technique is developed to solve the Luttinger-Kohn equation for
impurity states directly in k-space and is applied to calculate bound hole wave
functions in a ferromagnetic (Ga,Mn)As host. The rich properties of the band
structure of an arbitrarily strained, ferromagnetic zinc-blende semiconductor
yields various features which have direct impact on the detailed shape of a
valence band hole bound to an active impurity. The role of strain is discussed
on the basis of explicit calculations of bound hole states.Comment: 9 pages, 10 figure
Faraday Rotation as a diagnostic of Galactic foreground contamination of CMB maps
The contribution from the residuals of the foreground can have a significant
impact on the temperature maps of the Cosmic Microwave Background (CMB).
Mostly, the focus has been on the galactic plane, when foreground cleaning has
taken place. However, in this paper, we will investigate the possible
foreground contamination, from sources outside the galactic plane in the CMB
maps. We will analyze the correlation between the Faraday rotation map and the
CMB temperature map. The Faraday rotation map is dependent on the galactic
magnetic field, as well as the thermal electron density, and both may
contribute to the CMB temperature. We find that the standard deviation for the
mean cross correlation deviate from that of simulations at the 99.9% level.
Additionally, a comparison between the CMB temperature extrema and the extremum
points of the Faraday rotation is also performed, showing a general overlap
between the two. Also we find that the CMB Cold Spot is located at an area of
strong negative cross correlation, meaning that it may be explained by a
galactic origin. Further, we investigate nearby supernova remnants in the
galaxy, traced by the galactic radio loops. These super nova remnants are
located at high and low galactic latitude, and thus well outside the galactic
plane. We find some correlation between the Faraday Rotation and the CMB
temperature, at select radio loops. This indicate, that the galactic
foregrounds may affect the CMB, at high galactic latitudesComment: 13 pages, 22 figures, 6 table
- …
