675 research outputs found

    Entanglement Spectra of Heisenberg Ladders of higher Spin

    Get PDF
    We study the entanglement spectrum of Heisenberg spin ladders of arbitrary spin length S in the perturbative regime of strong rung coupling. For isotropic spin coupling the the entanglement spectrum is, within first order perturbation theory, always proportional to the energy spectrum of the single chain with a proportionality factor being also independent of S. A more complicated situation arises for anisotropic ladders of higher spin S>=1 since here even the unperturbed ground state has a nontrivial entanglement spectrum. Finally we discuss related issues in dimerized spin chains

    Dynamical polarizability of graphene beyond the Dirac cone approximation

    Get PDF
    We compute the dynamical polarizability of graphene beyond the usual Dirac cone approximation, integrating over the full Brillouin zone. We find deviations at ω=2t\hbar\omega=2t (tt the hopping parameter) which amount to a logarithmic singularity due to the van Hove singularity and derive an approximate analytical expression. Also at low energies, we find deviations from the results obtained from the Dirac cone approximation which manifest themselves in a peak spitting at arbitrary direction of the incoming wave vector \q. Consequences for the plasmon spectrum are discussed.Comment: 8 pages, 6 figure

    Entanglement in SU(2)-invariant quantum systems: The positive partial transpose criterion and others

    Get PDF
    We study entanglement in mixed bipartite quantum states which are invariant under simultaneous SU(2) transformations in both subsystems. Previous results on the behavior of such states under partial transposition are substantially extended. The spectrum of the partial transpose of a given SU(2)-invariant density matrix ρ\rho is entirely determined by the diagonal elements of ρ\rho in a basis of tensor-product states of both spins with respect to a common quantization axis. We construct a set of operators which act as entanglement witnesses on SU(2)-invariant states. A sufficient criterion for ρ\rho having a negative partial transpose is derived in terms of a simple spin correlator. The same condition is a necessary criterion for the partial transpose to have the maximum number of negative eigenvalues. Moreover, we derive a series of sum rules which uniquely determine the eigenvalues of the partial transpose in terms of a system of linear equations. Finally we compare our findings with other entanglement criteria including the reduction criterion, the majorization criterion, and the recently proposed local uncertainty relations.Comment: 7 pages, no figures, version to appear in Phys. Rev.

    Entanglement spectra of coupled S=1/2 spin chains in a ladder geometry

    Get PDF
    We study the entanglement spectrum of spin-1/2 XXZ ladders both analytically and numerically. Our analytical approach is based on perturbation theory starting either from the limit of strong rung coupling, or from the opposite case of dominant coupling along the legs. In the former case we find to leading order that the entanglement Hamiltonian is also of nearest-neighbor XXZ form although with an in general renormalized anisotropy. For the cases of XX and isotropic Heisenberg ladders no such renormalization takes place. In the Heisenberg case the second order correction to the entanglement Hamiltonian consists of a renormalization of the nearest neighbor coupling plus an unfrustrated next nearest neighbor coupling. In the opposite regime of strong coupling along the legs, we point out an interesting connection of the entanglement spectrum to the Lehmann representation of single chain spectral functions of operators appearing in the physical Hamiltonian coupling the two chains.Comment: 6 pages, 4 figures, published versio

    Dielectric function of the semiconductor hole liquid: Full frequency and wave vector dependence

    Get PDF
    We study the dielectric function of the homogeneous semiconductor hole liquid of p-doped bulk III-V zinc-blende semiconductors within random phase approximation. The single-particle physics of the hole system is modeled by Luttinger's four-band Hamiltonian in its spherical approximation. Regarding the Coulomb-interacting hole liquid, the full dependence of the zero-temperature dielectric function on wave vector and frequency is explored. The imaginary part of the dielectric function is analytically obtained in terms of complicated but fully elementary expressions, while in the result for the real part nonelementary one-dimensional integrations remain to be performed. The correctness of these two independent calculations is checked via Kramers-Kronig relations. The mass difference between heavy and light holes, along with variations in the background dielectric constant, leads to dramatic alternations in the plasmon excitation pattern, and generically, two plasmon branches can be identified. These findings are the result of the evaluation of the full dielectric function and are not accessible via a high-frequency expansion. In the static limit a beating of Friedel oscillations between the Fermi wave numbers of heavy and light holes occurs.Comment: 16 pages, 11 figures included. Update: Minor additions and adjustments, published versio

    Ballistic side jump motion of electrons and holes in semiconductor quantum wells

    Full text link
    We investigate the ballistic motion of electrons and holes in III-V semiconductor quantum wells with spin-orbit coupling and a homogeneous in-plane electric field. As a result of a non-perturbative treatment of both of these influences, particle wave packets undergo a pronounced side jump perpendicular to the field direction. For wave packets of sufficient width the amplitude of this motion can be estimated analytically and increases with decreasing field strength. We discuss the scaling behavior of the effect and some if its experimental implicationsComment: 4 pages, 3 figures include

    Dielectric function of the semiconductor hole gas

    Get PDF
    We study the dielectric function of the homogeneous hole gas in p-doped zinc-blende III-V bulk semiconductors within random phase approximation with the valence band being modeled by Luttinger's Hamiltonian in the spherical approximation. In the static limit we find a beating of Friedel oscillations between the two Fermi momenta for heavy and light holes, while at large frequencies dramatic corrections to the plasmon dispersion occur.Comment: 4 pages, 1 figure included. Version to appear in Europhys. Let

    Spin- and entanglement-dynamics in the central spin model with homogeneous couplings

    Full text link
    We calculate exactly the time-dependent reduced density matrix for the central spin in the central-spin model with homogeneous Heisenberg couplings. Therefrom, the dynamics and the entanglement entropy of the central spin are obtained. A rich variety of behaviors is found, depending on the initial state of the bath spins. For an initially unpolarized unentangled bath, the polarization of the central spin decays to zero in the thermodynamic limit, while its entanglement entropy becomes maximal. On the other hand, if the unpolarized environment is initially in an eigenstate of the total bath spin, the central spin and the entanglement entropy exhibit persistent monochromatic large-amplitude oscillations. This raises the question to what extent entanglement of the bath spins prevents decoherence of the central spin.Comment: 8 pages, 2 figures, typos corrected, published versio

    Noncollinear Ferromagnetism in (III,Mn)V Semiconductors

    Full text link
    We investigate the stability of the collinear ferromagnetic state in kinetic exchange models for (III,Mn)V semiconductors with randomly distributed Mn ions >. Our results suggest that {\em noncollinear ferromagnetism} is commom to these semiconductor systems. The instability of the collinear state is due to long-ranged fluctuations invloving a large fraction of the localized magnetic moments. We address conditions that favor the occurrence of noncollinear groundstates and discuss unusual behavior that we predict for the temperature and field dependence of its saturation magnetization.Comment: 5 pages, one figure included, presentation of technical aspects simplified, version to appear in Phys. Rev. Let

    Spin-orbit interaction in symmetric wells with two subbands

    Get PDF
    We investigate the spin-orbit (s-o) interaction in two-dimensional electron gases (2DEGs) in quantum wells with two subbands. From the 8×88\times 8 Kane model, we derive a new inter-subband-induced s-o term which resembles the functional form of the Rashba s-o -- but is non-zero even in \emph{symmetric} structures. This follows from the distinct parity of the confined states (even/odd) which obliterates the need for asymmetric potentials. We self-consistently calculate the new s-o coupling strength for realistic wells and find it comparable to the usual Rashba constant. Our new s-o term gives rise to a non-zero ballistic spin-Hall conductivity, which changes sign as a function of the Fermi energy (ϵF\epsilon_F), and can induce an unusual \emph{zitterbewegung} with cycloidal trajectories \textit{without} magnetic fields.Comment: v2: 4 two-column pages, 3 figures (added spin Hall conductivity and self-consistent calculation
    corecore